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ABSTRACT 

 

Dynamic Analysis of Pristine and Defective Single-Walled Carbon Nanotubes 

Jafarnia, Nima 

Master of Science, Sustainable Environment and Energy Systems Program 

Supervisor: Assoc. Prof. Dr. Volkan Esat 

 

 

December 2023, 108 pages 

 

This study focuses on investigating the vibrational behavior of SWNTs through 

conducting modal analysis. The primary objective of this research is to determine 

the natural frequency of pristine and defective SWNTs. Therefore, a comprehensive 

computational analysis using finite element modeling is performed on both pristine 

and defective SWNTs under cantilever and bridge boundary conditions with various 

diameters, lengths, and chirality. The results indicate that the natural frequency of all 

types of SWNTs decreases as the length increases. Moreover, since the impact of 

length is more prominent than diameter, the diameter’s impact can be neglected by 

the increase of length. Another part of this article focuses on the impacts of vacancy 

defects and Stone-Wales defects. It is observed that the double vacancy defects have 

the most degrading effects on the natural frequency of the SWNTs. This research’s 

aim is to contribute to the development of nanoscale technologies and the 

improvement of the field of materials science. 

 

Keywords: Carbon nanotubes, Natural frequency, Vibration, Stone-Wales defects, 

Vacancy defects 

 





 

ix 

 

ÖZ 

 

Bozulmamış ve Arızalı Tek Duvarlı Karbon Nanotüplerin Dinamik Analizi 

 

Jafarnia, Nima 

Yüksek Lisans, Sürdürülebilir Çevre ve Enerji Sistemleri Programı 

Tez Yöneticisi: Doç. Dr. Volkan Esat 

 

Aralık 2023, 108 sayfa 

 

Bu çalışma, Tek Duvarlı Karbon Nanotüpler’in (TDKNT) modal analiz yoluyla 

titreşim davranışını araştırmaya odaklanmaktadır. Bu araştırmanın temel amacı, 

bozulmamış ve kusurlu TDKNT’lerin doğal frekanslarını belirlemektir. Bu nedenle, 

çeşitli çap, uzunluk ve kiraliteye sahip bozulmamış ve kusurlu TDKNT’ler ankastre 

mesnet – boşta uç ve köprü (ankastre mesnet – ankastre mesnet) sınır koşulları 

altında sonlu elemanlar yöntemi kullanılarak kapsamlı bir şekilde incelenmiştir. 

Sonuçlar, uzunluk arttıkça tüm TDKNT türlerinin doğal frekansının azaldığını 

göstermektedir. Ayrıca, çap ile doğal frekans arasında tutarlı bir ilişki 

görülemediğinden, çap büyüdükçe doğal frekansın artabildiği veya azalabildiği 

gözlemlenmiştir. Bu makalenin bir diğer amacı da atom boşluğu ve Stone-Wales 

kusurlarının etkilerini incelemektir. Çift boşluk kusurlarının TDKNT’lerin doğal 

frekansı üzerinde en fazla bozucu etkiye sahip olduğu görülmektedir. Bu araştırma, 

nano ölçekli teknolojilerin gelişmesine ve malzeme biliminin ilerlemesine katkıda 

bulunmayı hedeflemektedir. 

 

Anahtar Kelimeler: Karbon nanotüpler, Doğal frekans, Titreşim, Stone-Wales 

kusurları, Boşluk kusurları 
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CHAPTER 1  

1. INTRODUCTION  

1.1 Significance of Carbon Nanotubes 

Different researchers have increasingly investigated nanomaterials and 

nanotechnology in the past decades. The reason behind this increased focus on 

nanotechnology lies in the fact that it can lead various areas of research to nanoscopic 

level [2]. In 1991, Iijima discovered that cylindrically shaped carbon structures could 

be made by utilizing an arc-discharge evaporation technique [1]. Following his work, 

several researchers developed new synthesis techniques that made the production of 

these cylinders more plausible [2]. These cylinders were named carbon nanotubes. 

Carbon nanotubes (CNTs) have remarkable mechanical and electrical properties. 

These properties differentiate them from commonly used materials such as stainless 

steel and graphite fibers [3]. Owing to their exceptional characteristics, CNTs are 

energy efficient and can be used in different sectors. Since energy consumption and 

greenhouse gas emissions have been rapidly increasing over the past century, 

resulting in temperature rise on Earth, potential solutions are deemed necessary [2]. 

Therefore, carbon nanotubes can be one of the solutions to this critical issue that we 

as humans are facing right now.  

Due to carbon nanotubes’ exceptional properties, they are used in multiple industries 

such as agriculture, tools manufacturing, etc. Some different applications of carbon 

nanotubes in different industries are shown in Figure 1.1. 
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Figure 1.1: Different applications of carbon nanotubes in different sectors 

[8] 

 

1.2 Geometry of Carbon Nanotubes 

In simple terms, carbon nanotubes are just rolled-up graphene sheets. Thus, 

if we roll up a graphene sheet into a hollow cylinder-shaped configuration, 

its diameter differs between 1 to 50 nm, and its length is more than 10 𝜇𝑚 

CNTs are created. 

The chiral vector 𝐶ℎ and the chiral angle 𝜃 are the primary parameters that 

are required to define the geometry of CNTs. Two-unit vectors named 𝑎1 and 

𝑎2 and two integers named m and n are used to define the chiral vector of a 

CNT [5]. The following is the equation of the chiral vector [5]: 

 𝐶ℎ = 𝑛𝑎1 + 𝑚𝑎2 (1.1) 

As depicted in Figure 1.2, the fundamental structure of the CNTs is defined 

according to the chiral vector or which angle the graphene sheet has been 

rolled into a cylindrical-shaped structure. 
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Figure 1.2: Illustration of a graphene sheet and geometrical characteristics for a 

CNT [6]. 

 

The following equation is used to calculate the diameter of a CNT [6]: 

 
𝑑𝐶𝑁𝑇 =

𝑎0√𝑚2 + 𝑚𝑛 + 𝑛2

𝜋
 

(1.2) 

   

In Equation 1.2 (1.2), 𝑎0 = √3𝑏, where b = 0.142 nm which is the length of the 

length of the C-C bond in the nanotube [5]. 

The following formula is used for calculating the circumference of a CNT [5]: 

 𝐿 = |𝐶ℎ| = 𝑎√𝑛2 + 𝑚2 + 𝑛𝑚 (1.3) 

   

The chiral angle can also be evaluated using the following equation [5]: 

 
sin 𝜃 =

√3𝑚

2√𝑛2 + 𝑚2 + 𝑛𝑚
 

(1.4) 
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cos 𝜃 =

2𝑛 + 𝑚

2√𝑛2 + 𝑚2 + 𝑛𝑚
 

(1.5) 

   

 
tan 𝜃 =

√3𝑚

2𝑛 + 𝑚
 

(1.6) 

   

   

The carbon nanotubes are categorized into three different configurations 

based on the chiral vector values (m, n) or their chiral angle (𝜃) [6]: 

1. Armchair: If m = n or its chiral angle (𝜃) is equal to 30 degrees, then 

the carbon nanotube is named armchair. 

2. Zigzag: If m = 0 or its chiral angle (𝜃) is equal to 0 degrees, then the 

carbon nanotube is named zigzag. 

3. Chiral: If 𝑚 ≠ 𝑛 ≠ 0 or its chiral angle (𝜃) is between 0 to 30 

degrees, then the carbon nanotube is named chiral. 

The rolling-up process and the side view for all three types of CNTs 

(armchair, zigzag, and chiral) are depicted in Figure 1.3 and Figure 1.4, 

respectively. 

 

 

Figure 1.3: (1) Process of rolling a graphene sheet to an armchair CNT (2) 

Process of rolling a graphene sheet to a zigzag CNT,  (3) Process of rolling 

a graphene sheet to a chiral CNT [6]. 

(1) (2) (3) 
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Figure 1.4: Side view of (a) Chiral (b) Zigzag (c) Armchair carbon nanotubes [6]. 

 

1.3 Types of Carbon Nanotubes 

The number of graphene layers is the criteria used to classify the carbon nanotubes. 

Carbon nanotubes consisting of a single graphene layer are called single-walled 

carbon nanotubes (SWNTs). SWNTs diameter is between 0.4 to 2 nm [10]. The other 

class of carbon nanotubes is multi-walled carbon nanotubes (MWNTs). MWNTs are 

formed of two or more coaxial cylinders; each is a cylindrical-shaped graphene sheet 

(SWNT). The outer diameter of MWNT varies from 2 to 100 nm, and their inner is 

between 1 to 3 nm [10]. In MWNTs, the SWNTs are connected to each other by the 

van der Walls forces between the carbon atoms of different walls of the nanotube 

[6]. In order to calculate this force, the Lennard-Jones parameters are required [6]. 

A schematic illustration of single-walled and multi-walled carbon nanotubes is 

depicted in Figure 1.5. 
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Figure 1.5: Schematic illustration of single-walled and multi-walled carbon 

nanotubes [9]. 

 

1.4 Defects in Carbon Nanotubes 

While carbon nanotubes have exceptional mechanical and electrical 

properties, these properties can be significantly affected by defects in their 

structures [7]. These defects can be caused by external effects or throughout 

their synthesis process [7]. Some of the common defects in carbon nanotubes 

are vacancy defects, Stone-Wales defects, atomic substitutions, and chirality 

defects [6]. Vacancy defects appear once the nanotube lattice lacks carbon 

atoms in its structure [6]. As a result of these missing atoms from the structure 

of the nanotube, its mechanical properties and thermal conductivity get 

weakened [7]. Vacancies in carbon nanotubes may occur because of exposure 

to radiation or extremely high temperatures [7].  
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Another type of defect that can cause changes in the mechanical and electrical 

properties of a CNT is the Stone-Wales defect [6]. Stone-Wales defects happen as a 

result of the rotation of two carbon atoms inside the nanotube lattice, which causes 

the nearby bonds to restructure and form two heptagons and two pentagons instead 

of four hexagons [7]. Thermal or radiation stress is the leading cause of this defect 

[7]. Vacancy, di-vacancy, and Stone-Wales defects are shown in Figure 1.6. 

 

 

Figure 1.6: Illustration of vacancy, di-vacancy, and Stone-Wales defects [7] 

 

Atomic defects and chirality defects are the other types of defects that can affect the 

properties of a CNT. Atomic defects happen when carbon atoms are substituted by 

other atoms, such as nitrogen or boron [12]. Furthermore, when the carbon nanotube 

deviates from its ideal chirality configuration, chirality defects appear [6]. As 

previously stated, depending on how the carbon atoms are arranged, each carbon 

nanotube has a specific ideal chirality configuration; when a CNT deviates from this 

configuration, chirality defects occur. 

Carbon nanotube defects do not always have a negative impact on the material’s 

properties. In some specific cases, these defects can be purposefully introduced into 

the nanotube to modify its properties and allow it to be used for a particular 

application. Optimization of carbon nanotubes for various applications necessitates 

a thorough understanding of these defects and how to incorporate them into a 

nanotube [6]. 
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1.5 Mechanical Properties of Carbon Nanotubes 

Carbon atoms are known to be able to sustain immense tensile stresses due 

to their covalent bonds (Figure 1.7) [8]. CNTs are also made of carbon atoms, 

which results in them having remarkable strength. For instance, the 

comparison between the tensile strength of steel and CNT indicates that 

CNTs are approximately 100 times stronger than steel [6,11]. A comparison 

between the ultimate tensile strength of some engineering materials with 

CNT is illustrated in Figure 1.9. Stiffness is also another property that is 

known to be high in CNTs. Their Young’s modulus is approximately 1-5 TPa 

which is significantly higher than any other common engineering material. 

To give an example, CNT’s Young’s modulus is almost 4 times higher than 

steel [6,11]. In addition to their exceptional stiffness, CNTs are resilient even 

under severe deformation, frequently regaining their original form without 

permanent damage. The main reason behind this resilience is also the 

covalent bonds between the carbon atoms [11]. The comparison between 

Young’s modulus of some engineering materials with CNT is shown in 

Figure 1.8. In addition to the exceptional mechanical properties, CNTs also 

have low density (around 1.3
𝑔

𝑐𝑚3) that makes them ideal for industries that 

require light-weight materials such as aerospace [11]. It is important to note 

that the mechanical properties of CNTs can differ due to changes in multiple 

parameters such as chirality, diameter, length, and presence of defects [6].  
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Figure 1.7: Conceptual design of a graphene sheet [8]. 

 

Figure 1.8: Comparison between Young’s modulus of some engineering materials 

with CNT [6]. 

 

 

Figure 1.9: Comparison between the ultimate tensile strength of some engineering 

materials with CNT [6]. 
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1.6 Sustainability Aspects of Carbon Nanotubes 

Energy and the environment have been the primary topic of discussion 

regarding climate change [13]. Research indicates that environmental 

contamination and deterioration are mainly caused by greenhouse gas 

emissions from the consumption of fossil fuels, and this issue must be 

addressed in order to mitigate the detrimental effects of these emissions on 

the Earth [13]. Nanomaterials have been considered as one of the plausible 

solutions to this challenge, and their unique properties and potential for 

utilization in a variety of sectors have attracted significant scientific attention 

[13]. The following are the applications of CNTs that benefits the 

environment and save energy [13]:  

• Application of carbon nanotubes with solar energy: Solar energy has been 

widely known as one of the most promising renewable energy sources around 

the world due to its abundance and widespread dispersion [13]. Carbon 

nanotubes have been utilized to increase the efficiency of solar cells through 

a variety of different methods [14,15]. One of these methods is implementing 

carbon nanotubes as counter electrodes, which has shown improvements in 

the transportation, performance, and photocurrent production of solar cells 

[14,15]. 

• Carbon nanotubes as greenhouse gas absorbents: The air quality of the Earth 

has been degraded due to air pollutants. Previously, unreliable traditional gas 

sensors have been used to improve air quality. Carbon nanotubes have shown 

great potential as gas-sensing materials due to their high capacity to absorb 

substances [16,17]. Materials that are integrated with carbon nanotubes have 

overcome the difficulties which are associated with pristine carbon nanotubes 

and are being utilized in different sectors to improve air quality [16,17]. 
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• Carbon nanotube applications in wastewater treatment: Pathogens have 

always been challenging to extract from water due to their evasive nature. 

SWNTs possess’ a high absorption capacity which can be implemented to 

extract pathogens from water. Thus, treatment-based applications 

incorporated with SWNTs have shown promising results [18,19]. 

• Carbon nanotube application in agriculture: Research indicated an immense 

potential for CNTs regarding plant and seed development [20,21,22]. The 

seeds treated with carbon nanotubes have shown increased water absorption 

and faster growth rate than regular seeds [21]. The exact mechanism behind 

this faster-paced growth is currently unknown. Moreover, researchers have 

found that CNTs integrated with cadmium can impair wheat development, 

while pristine CNTs increase the defensive capabilities of wheat seedlings 

[23]. An application of carbon nanotubes in agriculture is indicated in Figure 

1.10. 

 

 

Figure 1.10: Implementation of carbon nanotubes in agriculture [13]. 
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1.7 Aims and Objectives of the Thesis 

The primary focus of this research is on the modal analysis of pristine and 

defective single-walled carbon nanotubes (SWNTs). Conducting modal 

analysis on SWNTs would lead to determining the natural frequencies and 

mode shapes of this material which is one of the major objectives of 

conducting this type of analysis. Determination of natural frequencies of 

different types of SWNTs (armchair, zigzag, and chiral) would help develop 

our knowledge further on the mode shapes of this material. Analyzing the 

mode shapes of SWNTs can further our understanding of the structure, 

symmetry, and stability of SWNTs. This more profound understanding of 

SWNT can be used in the optimization of SWNT-based equipment. It is also 

important to note that modal analysis of defective SWNTs also enables the 

enhanced evaluation of mechanical properties of this material, such as 

Young’s modulus, Poisson’s ratio, and bending stiffness. These properties 

are crucial for any implementation of SWNTs in different sectors. Therefore, 

a thorough assessment of them would lead to designing optimized nanoscale 

devices incorporated with SWNTs. 

In conclusion, the main goal behind this research is to understand better how 

defects on SWNTs can affect the reliability, durability, and failure 

mechanism of materials that are being incorporated with SWNTs. 

Comprehension of the effect of defects would lead to researchers being able 

to lessen the negative impact of these defects while utilizing them to design 

desirable features such as mechanical flexibility or specialized optical 

responses. 

 



 

13 

 

CHAPTER 2  

2. LITERATURE REVIEW 

2.1 Review of Existing Literature on SWNTs 

The vibrational properties of carbon nanotubes have been a fascinating field of 

research for researchers over the past two decades. This field has been thoroughly 

investigated and analyzed by numerous researchers, and they have established a solid 

foundation for the further development of research in this area. This section of the 

thesis is dedicated to discussing previous research in this area in addition to research 

on the synthesis of carbon nanotubes. A complete evaluation of existing research in 

this area would advance our knowledge and assist us in identifying potential gaps in 

the literature so that they could be addressed.  

2.1.1 Synthesis Methods of Carbon Nanotubes 

Since 1991, when the Japanese researcher, Iijima, has synthesized CNTs, synthesis 

methods of carbon nanotubes have been developing. Since then, the synthesis of this 

material has been done by seven different methods. These methods are the electric 

arc discharge method, laser ablation method, thermal synthesis process, chemical 

vapor deposition (CVD), vapor-phase growth, flame synthesis method, and plasma-

enhanced chemical vapor deposition (PECVD) [2]. Many researchers have utilized 

the aforementioned seven methods. The pertinent research will be discussed in the 

following sections. 
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2.1.1.1 Electric arc discharge method 

Arc discharge evaporation was the method that was initially used by Iijima 

(1991). He utilized this specific method to synthesize CNTs. In comparison to 

alternative methods, defects appear at a lower rate using arc discharge 

evaporation. A carbon-based electrode at approximately 1700 ℃ is exposed 

to an arc discharge so that at the negative end of the electrode, CNTs would 

be generated [1]. Several different metals, such as nickel and iron, along with 

graphite, are used in this process. The inclusion of catalysts to create CNTs is 

also optional using this method [24]. Still, the synthesis of MWNTs seems 

more plausible without catalysts than SWNTs [24]. Moreover, because this 

process uses a metallic catalyst, the properties of the nanotubes created are 

poor even though the number of CNTs synthesized is generally high [24]. 

Thus, the implementation of purification seems obligatory after creating 

CNTs through this process [24]. CNTs synthesized by Iijima are illustrated in 

Figure 2.1. 

 

 

Figure 2.1: Indication of CNTs synthesized by Iijima [1]. These CNTs consist 

of multiple concentric shells [1]. In Figure (b), there is a closer look at CNTs 

depicted in Figure (a). Furthermore, Figure (c) provides an even more 

magnified view of CNTs shown in Figure (b). 
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2.1.1.2 Laser ablation method 

Thess et al. (1996), using small quantities of Nickel and Cobalt at a high temperature 

(1200 ℃), implemented the laser ablation method to synthesize carbon nanotubes. 

In this method, the laser is used to vaporize the graphite required for making carbon 

nanotubes in a chamber, resulting in forming thin tubes with great diameters. 

Moreover, Since consistent pressure is needed for this method, helium, and argon 

are utilized. While this approach produces CNTs with excellent quality and purity 

and is cost-effective, the production is CNTs is much less compared to arc-discharge 

methods. CNTs created by this method are depicted in Figure 2.2. 

 

 

Figure 2.2: Illustration of CNTs synthesized using laser ablation method [25]. 
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2.1.1.3 Thermal synthesis process 

The aforementioned CNT production methods (arc-discharge and laser 

ablation) are synthesis methods that are plasma-based [2]. Thus, the 

temperature needs to be meticulously monitored for these techniques [2]. 

Additionally, there are other methods, such as plasma-enhanced chemical 

vapor deposition (CVD). These synthesis techniques utilize carbon feedstock 

as the main component, along with catalysts such as iron and nickel to 

synthesize CNTs [2]. Moreover, it is possible to incorporate extra active 

feedstock to ease the synthesis process. The thermal synthesis process is one 

of the methods that would facilitate the chemical vapor deposition process 

[2]. 

2.1.1.4 Chemical vapor deposition (CVD) 

The currently employed synthesis methods for CNTs have two major 

setbacks. These setbacks are the necessity for purification of the synthesized 

CNTs, and the high temperature required to conduct these procedures. In 

1996, chemical vapor deposition (CVD) was initially used to create CNTs 

[26,27]. The benefits of this method were that the growth conditions 

surrounding the production of CNTs could be controlled precisely, and the 

number of CNTs produced was substantial as well. CVD requires 

atmospheric pressure and utilizes two different configurations, which are 

horizontal and vertical [28]. In this method, the base material is heated in an 

oven while adding gases that contain carbon, such as methane, to the system. 

The nature of the experiment requires these gases to be gradually added to 

the chamber. Moreover, other gases, such as argon and hydrogen, are used as 

catalysts [28].  
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2.1.1.5 Vapor-phase growth [29] 

Vapor phase growth is an advanced variation of the chemical vapor deposition 

(CVD) method where the substrate is not utilized. The lack of substrate will make 

the process of synthesizing CNTs more sophisticated. This method makes use of a 

metal as a catalyst along with two furnaces that are operating at low temperatures in 

the chamber. The first furnace is responsible for creating the catalytic particles. After 

that, they reach the second furnace, and the diffusion of carbon atoms leads to CNTs 

being produced. Some cases use argon as the catalyst. CNTs created by the vapor-

phase growth method are depicted in Figure 2.3. 

 

 

Figure 2.3: CNTs synthesized using vapor-phase growth method [29] 
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2.1.1.6 Flame synthesis method 

An alternative method that is being used to synthesize CNTs is flame synthesis 

[30]. This process uses flame as a substrate to provide the environment 

required to produce different types of carbon nanotubes. Oxidizer integrated 

with varying gases of fuel like methane and acetylene is used to form the 

gaseous mixture needed for synthesizing CNTs. For ease of operation, the 

utilization of a catalyst is mandatory [30]. In contrast to other methods, flame 

synthesis reaches the required process in an authothermal process. In order to 

attain an appropriate environment for the synthesis, a vaporized catalyst might 

be necessary to add to the flame [30].  

2.1.1.7 Plasma enhanced chemical vapor deposition (PECVD) [31] 

Plasma enhanced chemical vapor deposition (PECVD) is an advanced method 

stemming from the chemical vapor deposition (CVD) method. PEVCD is 

more efficient than CVD in terms of temperature and regulating the 

development of CNTs. In general, PEVCD requires less temperature and 

produces more pure CNTs because of the plasmatic energy it uses to split the 

gas molecules that form the CNTs. PEVCD is the most efficient method to 

produce SWNT, which makes this method extremely crucial compared to 

previous ones. CNTs generated using plasma enhanced chemical vapor 

deposition method are depicted in Figure 2.4.  
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Figure 2.4: CNTs synthesized using plasma enhanced chemical vapor deposition 

method (PECVD) [31]. 

 

2.1.2 Vibration Analysis of Pristine SWNTs 

Vibration analysis of pristine SWNTs has been done previously by multiple 

researchers using multiple methods, and this section is dedicated to the discussion of 

these methods. 

Sakhaee-Pour et al. (2009) analyzed SWNTs' vibration using beam elements. Their 

work determined the natural frequency of bridge and cantilever SWNTs with 

different chirality, lengths, and diameters using finite element modeling. Using the 

same approach, Mir et al. (2008) conducted finite element modeling to determine the 

natural frequency of zigzag and armchair SWNTs. Arghavan and Singh (2011) 

studied the free and forced vibration of cantilever and bridge SWNTs by utilizing a 

mathematical model. Using this model, they reported different natural frequencies 

and mode shapes for several zigzag and armchair SWNTs. The first eight mode 
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shapes of a (6,0) zigzag cantilever SWNT studied by Arghavan and Singh (2011) are 

illustrated in Figure 2.5. Chowdhury et al. (2010) used molecular mechanics 

approach to conduct vibrational analysis on zigzag and armchair SWNTs for 

different aspect ratios. Their results indicate that the increase in the aspect ratio of 

the nanotube will result in a decrease in its natural frequency. The vibration of 

SWNTs filled with water is studied by modeling the van der Waals (vdW) interaction 

between the water and the SWNT [54].  

 

 

Figure 2.5: Mode shapes of the first eight natural frequencies of a (6,0) zigzag 

SWNT with cantilever boundary condition (Arghavan and Singh, 2011). 

 

Bocko and Lengvarsky (2014) investigated the vibration of SWNT for four different 

boundary conditions using a continuum approach which is on the basis of the 

nonlocal theory of the beam. Fatahi-Vajari and Imam (2016) developed a fourth-

order partial differential equation to investigate the natural frequency of SWNTs 
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based on a novel approach called doublet mechanics which only incorporates the 

scale parameters and chirality effects. Using the same method, they also investigated 

the axial vibration of SWNTs [57]. Bensattalah et al. (2016) analyzed chirality and 

thermal effects on SWNTs by utilizing the nonlocal elasticity theory and the Euler–

Bernoulli and Timoshenko beam theories to conduct free vibration analysis. Their 

results showed that the chirality of SWNTs affects the frequency ratio of SWNTs by 

a large percentage. Lee and Lee (2012) performed modal analysis on SWNTs and 

nanocones with varying disclination angles by conducting finite element modeling 

with the Ansys software (Figure 2.6).  

 

 

Figure 2.6: Finite element modeling of SWNTs with circle and ellipse sections 

(Lee and lee, 2012) 

 

The first four mode shapes of the SWNTs with multiple lengths using the molecular 

dynamics method and Fourier analysis were investigated by Pine et al. (2014). Using 

the same method, Chang and Huang (2013) examined the vibrational behavior of 

SWNTs with different chirality. They studied the effects of various lengths and 

diameters on the vibrational behavior of SWNTs (Figure 2.7). Mungra and Webb 

(2015) incorporated a continuum mechanics approach to be able to model the 

vibrational behavior of SWNTs. By incorporating this method, they studied various 

SWNTs with different aspect ratios [61]. Moreover, their results showed that 

SWNTs have the potential to be implemented in different sensors in various 
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industries [61]. By considering multiple tube wall thicknesses, lengths, and different 

boundary conditions of SWNTs, Ansari et al. (2012) studied the vibrational behavior 

of the SWNTs using a semi-analytical finite element method. 

 

 

Figure 2.7: Atomistic simulation of a (9,0) cantilever zigzag SNWT (Chang and 

Huang, 2013). 

 

2.1.3 Vibration Analysis of Defective SWNTs 

Different researchers have studied the effects of defects on the structure of SWNTs. 

These defects can change the characteristics of SWNTs, and since synthesizing 

SWNTs usually results in their structures, it is evident that the impact of these defects 

is required to be studied. This section is dedicated to the methods previous 

researchers implemented while studying the vibrational behavior of defective 

SWNTs. 

Talla et al. (2010) studied the changes in the resonant frequency of defective SWNTs 

that are affected by structural defects, especially Stone-Wales ones. They used 

resonance Raman spectroscopy to determine the natural frequencies of defective 

SWNTs [63]. Muc et al. (2013) conducted an axial vibration analysis of the defective 

SWNTs by using the Euler beam model, an orthotropic model, and 3D finite element 

modeling. Joshi et al. (2011) utilized the continuum mechanics method to perform 
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dynamic analysis on cantilever SWNTs affected by pinhole defects with different 

chirality (Figure 2.8). Their results indicate that the natural frequency of the lengthier 

nanotube gets more affected by the defects, and the diameter of the nanotube is not 

as impactful as its length on the SWNT’s natural frequency [65]. 

 

 

 

Figure 2.8: SWNTs with pinhole defect (Joshi et al., 2011). 

 

 

Thorough conducting vibration analysis on SWNTs, Goel et al. (2020), using 

molecular dynamics simulations, studied a variety of parameters of defective 

SWNTs like aspect ratio, chirality, and the number of vacancy defects on the 

resonant frequency of cantilever SWNTs. Their results showed that the number of 

defects and how they are positioned on the SWNTs drastically affect the resonant 

frequency of the nanotube (Figure 2.9). Moreover, using a similar method, they 

analyzed the effects of hexa-vacancy defects on bridged SWNTs that indicated as 

the length of the nanotube increases, the effect of chirality on the resonant frequency 

of the nanotube decreases [67]. 
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Figure 2.9: Molecular dynamics simulation with different number of defects on the 

nanotube. (a) one, (b) three, (c) five, and (d) seven defects (Goel et al., 2020). 

 

Ghavamian et al. (2013) investigated the effect of randomly distributed defects on 

carbon nanotubes using finite element modeling. They studied the impact of Si-

doping, carbon vacancy, and perturbation defects on SWNTs (Figure 2.10) [68]. The 

results showed that stability and the fundamental frequency of the nanotubes get 

reduced by introducing defects to the SWNTs structure [68]. Bedi et al. (2022) 

studied the effects of defects on the structure of defective and pristine SWNTs and 

graphene sheets by simulating the nanotubes using molecular dynamics. This study 

was conducted on cantilever SWNTs, and graphene sheets to determine the effects 

of aspect ratio and chirality while taking into account the number of defects on the 

fundamental frequency of SWNTs and graphene sheets [69]. The results of this study 

indicate that vacancy defects have a more significant impact than Stone-Wales 

defects on the natural frequency of Single-Walled Carbon Nanotubes (SWNTs) [69]. 
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Figure 2.10: An illustration of Si-doping, carbon vacancy, and perturbation defects 

on SWNTs (Ghavamin et al., 2013). 

 

Georgantzinos  et al. (2014) employed a structural mechanics method to simulate the 

SWNTs with vacancy defects by using spring elements. The results of this study 

indicate that as the size of the vacancy defect increases, it has a greater impact on the 

fundamental frequency of the SWNT [70]. Chen et al. (2011) utilized 3D finite 

element models on the basis of continuum mechanics approach to study the effects 

of Stone-Wales and vacancy defects on SWNTs. They concluded that three of the 

crucial parameters which affect the vibrational properties of the SWNTs aside from 

the number of defects are length, diameter, and the defects' position [71]. Hudson et 

al. (2018) used order reduction methods to perform modal analysis on defective 

SWNTs. Furthermore, Parvane et al. (2011), and Shariati et al. (2014), studied the 

vibrational characteristics of pristine and defective SWNTs by employing the 

structural mechanics method. 
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2.2 Unaddressed Areas in Existing Research 

Generally, the theories used for studying SWNTs are either molecular 

dynamics or structural mechanics. Several researchers have used these 

methods to study different characteristics of SWNTs. In the existing 

literature, molecular dynamics is more common than structural mechanics to 

simulate the SWNTs to study their vibrational behavior. Primarily, 

researchers utilizing molecular dynamics have studied the vibrational 

behavior of zigzag and armchair pristine SWTNs under different boundary 

conditions, lengths, and diameters. Therefore, the literature regarding 

defective SWNTs is quite scarce using this method. 

Additionally, researchers who studied the SWNTs using the structural 

mechanics approach have studied the vibrational behavior of pristine 

armchair and zigzag SWNTs, and due to the difficulties of simulating chiral 

SWNTs in finite element modeling software, it has seldomly been 

investigated. Also, the vibrational behavior of defective SWNTs by utilizing 

the structural mechanics method has been analyzed only by a few researchers, 

and it is mostly regarding vacancy defects rather than Stone-Wales defects. 

Thus, this study aims to study the vibrational characteristics of pristine and 

defective armchair, zigzag, and chiral SWNTs to fulfill the gaps in the 

literature. 
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CHAPTER 3  

3. THEORY AND METHODOLOGY 

3.1 Equivalent-Continuum Modelling of SWNTs 

3.1.1 Finite Element Modeling of Pristine SWNTs 

The modeling of the SWNTs has been done by considering them as a frame structure 

while considering the bonds between the atoms as beam elements and the atoms of 

carbon as joints. The finite element modeling of the hexagonal lattice of the SWNT 

is indicated in Figure 3.1. The software used for this study is Marc Mentat 2020, 

which is used for conducting linear and nonlinear finite element modeling. 

 

 

Figure 3.1: Finite element modeling concept of the repeating structure of a SWNT 
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The basis behind predicting the behavior of carbon-carbon (C-C) bonds is through 

understanding and implementing the concept of energy equilibrium state. In order to 

utilize this state, aside from the force constant of the molecular mechanics, the 

torsional, axis, and bending stiffness are also needed from structural mechanics [34-

37]. The atomic interaction between the carbon atoms is indicated in Figure 3.2. 

 

 

Figure 3.2: Interatomic interaction in molecular mechanics [32] 

 

Equation 3.1 shows the steric potential energy. This equation indicates that the steric 

potential energy is the summation of bond stretching (𝑈𝑟), bond angle bending (𝑈𝜃), 

dihedral angle torsion (𝑈𝜑), van der Waals (𝑈𝑣𝑑𝑊), out-of-plane torsion (𝑈𝑤), and 

electrostatic potential energy (𝑈𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐) [34-37].  

 𝑈𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑈𝑟 + ∑ 𝑈𝜃

+ ∑ 𝑈𝜙 + ∑ 𝑈𝑤 + ∑ 𝑈𝑣𝑑𝑊 + ∑ 𝑈𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 

 

(3.1) 
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Since bond stretching and bong angle bending are vital to the simulation, they were 

converted into a harmonic function indicated in Equation 3.2. 

 

 
𝑈(𝑡) =

1

2
𝑘𝑥2(𝑡) =

1

2
𝑘𝐴2 cos2(𝜔𝑡 − 𝜑) 

 

(3.2) 

Other Equations necessary to calculate the total energy based on molecular 

mechanics theory are Equations 3.3, 3.4, and 3.5 which are the equations that are 

used to calculate bond stretching, bond angle bending, dihedral angle torsion, and 

out-of-plane torsion. In these equations 𝑘𝑟 , 𝑘𝜃 , 𝑎𝑛𝑑 𝑘𝜏 are the forced constant 

corresponding to each interatomic reaction related to the equation. Moreover, 

∆𝑟, ∆𝜃, 𝑎𝑛𝑑 Δ𝜙 are the changes in bond length, bond angle due to bending, and bond 

angle due to twisting, correspondingly [32]. 

 

 
𝑈𝑟 =

1

2
𝑘𝑟(𝑟 − 𝑟0)2 =

1

2
𝑘𝑟(∆𝑟)2 

(3.3) 

 

 
𝑈𝜃 =

1

2
𝑘𝜃(𝜃 − 𝜃0)2 =

1

2
𝑘𝜃(∆𝜃)2 

(3.4) 

 

 
𝑈𝜏 = 𝑈𝜙 + 𝑈𝑤 =

1

2
𝑘𝜏(Δ𝜙)2 

(3.5) 

 

Using the Equations 3.6, 3.7, and 3.8, the axial elastic strain energy (𝑈𝑁), bending 

elastic strain energy (𝑈𝑀), and torsional elastic strain energy (𝑈𝑇) of a beam can be 

calculated (Figure 3.3). In these equations, L is the distance between two carbon 

atoms (𝑎𝑐−𝑐 = 0.142 𝑛𝑚), and A, J and I are the geometrical characteristics of the 

beam corresponding to area of cross section, polar moment of inertia, and area 

moment of inertia which are given in Equation 3.9. Furthermore, ∆𝐿, 2𝛼, ∆𝛽, 𝐸,
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𝑎𝑛𝑑 𝐺 used in these equations are the displacement in axial direction, variation in 

rotation angle, twist angle, Young’s moduli, and shear moduli, respectively [32]. 

 

 

Figure 3.3: Depiction of a consistent beam subjected to solely tensile forces, a 

bending moment, and a torsion moment [33]. 
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 𝐴 =
𝜋

4
 𝑑2,   𝐼 =

𝜋
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 𝑑4,   𝐽 =

𝜋

32
𝑑4 (3.9) 
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As mentioned before, in order to be able to model the SWNTs as frame structure, 

both the theories of molecular dynamics and structural mechanics should be 

considered. Thus, from the previous equations, three force constants are determined. 

These force constants are 𝑘𝑟 , 𝑘𝜃, 𝑘𝜏 [32]. These constants are the basis of the 

modeling of SWNTs as frame structures. In order to predict the linear behavior of 

SWNTs, these constants need to be determined. Therefore, several researchers have 

studied how these constants can be calculated. One of the first and most prominent 

studies that have been done on these constants was conducted by Li and Chou (2003), 

which was later verified by applying them to graphite. The values for these constants 

are given in Equation 3.10 [38].  

 

 𝑘𝑟 = 652
𝑛𝑁

𝑛𝑚
, 𝑘𝜃 = 0.867 𝑛𝑁.

𝑛𝑚

𝑟𝑎𝑑2  , 𝑘𝜏 = 0.278 𝑛𝑁.
𝑛𝑚

𝑟𝑎𝑑2  (3.10) 

   

   

Li and Chou (2003) neglected the effect of out-of-plane torsion in their analysis. This 

assumption did not take into account the bending resistance of SWNT. Thus, other 

researchers, such as Tserpes and Papanikos (2005), using the approach implemented 

by Li and Chou (2003), got the values for E and G as 5.49 TPa and 871 GPa, 

respectively. These values of E and G give the value of Poisson’s ratio as 2.15, which 

can be only feasible if the material is anisotropic. That indicates the values for 

𝑈𝑇 𝑎𝑛𝑑 𝑈𝑀 are flawed [41]. In order to overcome these flaws, Scarpa and Adhikari 

(2008) incorporated a different method to calculate Young and shear modulus that 

are given in Equations 3.11 and 3.12. 

 

 
𝐸 =

4𝑘𝑟𝐿

𝜋𝑑2
 

 

(3.11) 
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𝐺 =

32𝑘𝜃𝐿

𝜋𝑑4
 

 

(3.12) 

   

Using the equation 𝐺 = 𝐸/2(1 + 𝑣), Scarpa and Adhikari (2008) determined the 

values for the cross-sectional parameters of the beam. These cross-sectional 

characteristics of the circular beam element utilized in C-C bond finite element 

modeling are given in Table 3.1. The simulation of the bonds between the carbon 

atoms was conducted using a 3D beam element named Type 98. The beam nodes 

consist of six degrees of freedom, with three related to rotational movement around 

the x, y, and z axes, and the remaining three associated with translational movement 

along the x, y, and z axes. The aforementioned beam and values are used by Zuberi 

and Esat (2016) and also in this study. The benefit of incorporating this element is 

that it indicates both linear and nonlinear elastic material behavior in addition to its 

transverse shear effect [43].  

 

Table 3.1: Cross-sectional characteristics of the circular beam element utilized in 

C-C bond finite element modeling. 

Bond Length (L) Bond Diameter (d) 
Young’s Modulus 

(E) 
Shear Modulus (G) 

Poisson’s ratio 

(𝜐) 

0.142 nm 0.0844 nm 16.71 TPa 8.08 TPa 0.034 

 

The simulation of SWNTs was done in Marc Mentat software. An illustration of 

finite element model of an armchair (12, 12) SWNT is indicated in Figure 3.4. 
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Figure 3.4: Finite element model of an armchair (12,12) SWNT. 

 

This study’s main aim is to determine the natural frequencies and mode shapes of 

different pristine and defective SWNTs. So, calculating the natural frequencies of 

the SWNTs is not possible without its geometry, mass, and boundary conditions [44]. 

In addition, the density of the beams is also necessary [44]. The geometry of the 

SWNTs is already defined, and the boundary conditions will be discussed later in 

this chapter. Still, the mass and density have not been discussed yet. Thus, it is 

assumed that the mass of each carbon atom, which is modeled as nodes with 

extremely small diameters without any rotational degrees of freedom, is 1.9943 ∗

10−29 tonne [44]. Furthermore, the density of the beams is considered as 2.3 ∗

10−27 𝑡𝑜𝑛𝑛𝑒/𝑛𝑚3 [44]. The geometry of the mass element implemented in this 

study is depicted in Figure 3.5. 
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Figure 3.5: Geometry of the mass element used for SWNT simulation [44]. 

3.1.2 Finite Element Modeling of Defective SWNTs 

The simulation of the frame structure of the defective SWNTs is similar to pristine 

SWNTs, which is discussed in the previous section. The difference between these 

two types of SWNTs is defects that are introduced to the structure of the SWNT 

analyzed. Two types of defects are introduced to the structure of SWNTs for this 

study. These defects are named vacancy and Stone-Wales defects. The process of 

implementing them into an SWNT structure is depicted in Figure 3.6. Moreover, this 

study aims to depict how introducing these defections would impact the natural 

frequency of different types of CNTs in cantilever and bridge boundary conditions. 

Thus, up to six defects are implemented in the structure. The location of these defects 

is illustrated in Figure 3.7. 

 

Figure 3.6: Process of introducing (a) vacancy defect (b) Stone-Wales defect into 

the SWNTs structure [45]. 
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Figure 3.7: Selected location of the defects introduced to the SWNT structure. 

3.1.3 Characteristics and Boundary Conditions of SWNTs 

This study aims to determine various natural frequencies and mode shapes of 

armchair, zigzag, and chiral pristine and defective SWNTs. In order to do that, 

armchair, zigzag, and chiral SWNTs are analyzed in different lengths and diameters 

using Marc Mentat finite element modeling software. The SWNTs diameters, 

chirality, and lengths investigated in this study are indicated in Table 3.2, Table 3.3, 

Table 3.4, Table 3.5,  

Table 3.6, and Table 3.7. The diameter and lengths studied from different types of 

carbon nanotubes were chosen approximately close to one another so that the results 

of them can be compared. Furthermore, two boundary conditions for the modal 

analysis of SWNTs are studied. These boundary conditions are cantilever and bridge, 

that are indicated in Figure 3.8, and Figure 3.9, respectively. 

 

Table 3.2: Characteristics of armchair SWNT models. 

Armchair SWNTs Diameter (nm) Chirality (deg) 

(3,3) 0.4068 30 

(5,5) 0.678 30 

1 2 3 4 5 6 
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(10,10) 1.356 30 

(12,12) 1.6272 3 

 

Table 3.3: Lengths utilized for finite element modeling of armchair SWNTs. 

Length (nm) 0.9838 1.9676 3.9352 7.8704 15.7408 

 

Table 3.4: Characteristics of zigzag SWNT models. 

Zigzag SWNTs Diameter (nm) Chirality (deg) 

(5,0) 0.391444 0 

(10,0) 0.782887 0 

(15,0) 1.174331 0 

(20,0) 1.565774 0 

 

Table 3.5: Lengths utilized for finite element modeling of zigzag SWNTs. 

Length 

(nm) 
1.136 1.988 4.118 7.952 15.62 

 

Table 3.6: Characteristics of chiral SWNT models. 

Chiral SWNTs Diameter (nm) Chirality (deg) 

(4,2) 0.414265 19.1 

(8,4) 0.82853 19.1 

(12,6) 1.242795 19.1 
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(16,8) 1.65706 19.1 

 

Table 3.7: Lengths utilized for finite element modeling of chiral SWNTs. 

Length 

(nm) 
1.12788 2.25576 4.51152 7.89516 15.79032 

 

 

 

Figure 3.8: Illustration of Cantilever Boundary Condition for a SWNT 

 

 

Figure 3.9: Illustration of the Bridge Boundary Condition for a SWNT 

 

Fixed end 
Fixed end 

Fixed end 
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3.2 Model Validation 

Using the finite element modeling discussed in the previous sections, the frame 

structure of different types of SWNTs is modeled in Marc Mentat 2020 software by 

using beam element type 98 to connect the C-C bonds. Furthermore, after modeling 

the geometry, the boundary conditions and carbon atom masses are specified in the 

software so that the modal analysis of different types of SWNTs can be conducted. 

By conducting the modal analysis, the natural frequency and the mode shapes of 

these SWNTs can be extracted from the software.   

As the main purpose of this study is to determine the natural frequency of SWNTs 

with different lengths and diameters, an armchair SWNT was modeled with a length 

of 7.383 nm and a diameter of 0.814 nm. Our results were compared with the results 

obtained by Sakhaee-Pour et al. (2009). The results are depicted in Figure 3.10. 

While Sakhaee-Pour et al. (2009) employed an experimental equation to simulate 

SWNTs, our study took a different approach. Still, the results obtained from our 

study exhibit strong agreement with this study, thus validating our model for further 

investigation. The model utilized by Sakhaee-Pour et al. (2009) was later used by 

other researchers in later years, which indicates the validity of this model [47,48]. 

 



 

39 

 

 

Figure 3.10: Comparison between author’s model and Sakhaee-Pour et al. (2009) 

for an armchair SWNT with a length of 7.383 nm and diameter of 0.814 nm. 

 

In Figure 3.10 variations in specific mode numbers may have been caused by 

differences in mechanical properties or modeling approaches applied to the studied 

single-walled carbon nanotubes (SWNTs). 
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CHAPTER 4  

4. RESULTS AND DISCUSSION 

4.1 Modal Analysis of Pristine Carbon Nanotubes 

Understanding the dynamic behavior of materials is possible by conducting modal 

analysis on them [44]. SWNTs are no exception, and to understand their dynamic 

characteristics, modal analysis is required to be conducted. Thus, this section is 

dedicated to analyzing the modal behavior of pristine SWNTs with cantilever and 

bridge boundary conditions. The natural frequency and mode shapes of SWNTs with 

different diameter, length, and chirality can be determined by conducting modal 

analysis. Understanding the dynamic behavior of SWNTs helps scientists and 

engineers to predict the instability and failures associated with this material [44]. 

Moreover, it can be used to design and optimize SWNT-based structures by 

predicting the natural frequencies that can be used for different applications, such as 

nanoscale sensors. In summary, comprehending the vibrational characteristics of 

SWNTs with different boundary conditions leads to a better understanding of their 

mechanical properties and supports the development of innovative nanoscale 

applications [44]. 

4.1.1 Cantilever Boundary Condition 

Modal analysis of pristine armchair, zigzag, and chiral SWNTs has been conducted 

under cantilever boundary condition (Figure 3.8). Four different SWNTs have been 

chosen for different configurations of the nanotube. The following SWNTs are being 

analyzed in this study: 

• Armchair (n=m): (3,3), (5,5), (10,10), and (12,12) 

• Zigzag (n,0): (5,0), (10,0), (15,0), and (20,0) 
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• Chiral (n≠m): (4,2), (8,4), (12,6), and (16,8) 

The reason behind the selection of these SWNTs for each configuration is that their 

diameter is similar (Table 3.2, Table 3.4, and  

Table 3.6). Therefore, their results are comparable. These nanotubes are being 

studied in 5 different lengths so that the effect of length on the natural frequency of 

SWNTs can be comprehensively examined and understood (Table 3.3, Table 3.5, 

and Table 3.7). Due to the nature of the SWNTs modeling, the lengths for armchair, 

zigzag, and chiral cannot be the same, but the modeling was done in a way that the 

five lengths studied are for all these three configurations are close.  

The outcomes of the modal analysis of the pristine armchair SWNTs are depicted in 

Table 4.1, Table 4.2, Figure 4.1, and Figure 4.2. Additionally, the modal analysis 

results for pristine zigzag SWNTs are demonstrated in Table 4.3, Table 4.4, Figure 

4.3, and Figure 4.4. Similarly, the modal analysis results of pristine chiral SWNTs 

are shown in Table 4.5, Table 4.6, Figure 4.5, and Figure 4.6. Furthermore, the mode 

shapes of a cantilever armchair (10,10) SWNT are depicted in Figure 4.7. 
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Table 4.1: Natural frequencies (GHz) of a cantilever armchair (a) (3,3), and (b) 

(5,5) SWNT 

(a) 
Length 

(nm) 
0.9838 1.9676 3.9352 7.8704 15.7408 

Mode 

Number 

1 1073 336 92 24 6 

2 1073 336 92 24 6 

3 2665 1345 509 143 37 

4 3766 1526 509 143 37 

5 3766 1526 676 339 103 

6 4326 2300 1168 380 103 

7 4326 3326 1235 380 170 

8 4431 3326 1235 588 197 

9 5425 4036 2028 697 197 

10 5538 4266 2084 697 295 

11 5538 4266 2084 1016 317 

12 7681 4868 2994 1070 317 

13 7681 4869 2994 1070 460 

14 7925 5159 3380 1480 460 

15 7925 5159 3482 1480 509 

(b) 
Length 

(nm) 
0.9838 1.9676 3.9352 7.8704 15.7408 

Mode 

Number 

1 1461 513 149 39 10 

2 1461 513 149 39 10 

3 1822 1438 723 228 61 

4 1822 1657 743 228 61 

5 2844 1657 743 363 166 

6 3591 1960 1167 579 166 

7 3591 1960 1643 579 182 

8 4143 2101 1643 588 295 

9 4143 2101 1684 1015 312 

10 4204 2298 1684 1015 312 

11 4472 3180 1732 1088 492 

12 4491 3180 1732 1498 492 

13 4491 3941 1962 1498 545 

14 5456 3941 1962 1643 697 

15 5456 4234 2170 1643 697 
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Table 4.2: Natural frequencies (GHz) of a cantilever armchair (a) (10,10), and (b) 

(12,12) SWNT 

(a) 
Length 

(nm) 
0.9838 1.9676 3.9352 7.8704 15.7408 

Mode 

Number 

1 1108 553 266 76 20 

2 1108 553 266 76 20 

3 1402 773 426 374 116 

4 1402 773 426 384 116 

5 1731 1191 685 384 188 

6 1731 1191 685 411 295 

7 2314 1484 747 411 296 

8 2314 1495 1022 451 296 

9 2682 1495 1022 451 410 

10 2932 1689 1160 587 410 

11 3077 1689 1160 592 416 

12 3078 2188 1166 592 416 

13 3091 2188 1266 837 434 

14 3091 2213 1266 837 434 

15 3141 2213 1274 876 476 

(b) 
Length 

(nm) 
0.9838 1.9676 3.9352 7.8704 15.7408 

Mode 

Number 

1 1106 495 302 89 24 

2 1106 495 302 89 24 

3 1138 825 312 287 135 

4 1138 825 312 287 135 

5 1704 857 652 347 188 

6 1705 857 652 347 284 

7 1705 1441 749 376 284 

8 1705 1441 809 425 292 

9 2344 1488 809 425 292 

10 2554 1498 937 543 295 

11 2554 1498 937 543 321 

12 2783 1558 1067 587 321 

13 2783 1558 1067 803 336 

14 2843 1973 1165 828 336 

15 2843 1973 1263 834 386 
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Table 4.3: Natural frequencies (GHz) of a cantilever zigzag (a) (5,0), and (b) (10,0) 

SWNT 

(a) 
Length 

(nm) 
1.136 1.988 4.118 7.952 15.62 

Mode 

Number 

1 777 285 71 19 5 

2 777 285 71 19 5 

3 2440 1438 423 120 32 

4 3385 1515 423 120 32 

5 3385 1515 709 329 88 

6 3593 2112 1040 329 88 

7 5217 3540 1114 370 171 

8 5217 3540 1114 543 171 

9 5942 4229 2021 628 189 

10 5942 5148 2021 628 278 

11 6817 5148 2115 1008 281 

12 6817 5379 3061 1008 281 

13 6920 5379 3061 1109 415 

14 7892 5633 3112 1454 415 

15 7892 5633 3491 1454 568 

(b) 
Length 

(nm) 
1.136 1.988 4.118 7.952 15.62 

Mode 

Number 

1 1267 547 150 43 11 

2 1267 547 150 43 11 

3 1455 1297 712 248 69 

4 1455 1297 762 248 69 

5 2450 1445 762 372 187 

6 3110 1838 1091 570 187 

7 3110 1838 1253 632 190 

8 3657 2063 1253 632 291 

9 3657 2063 1340 1112 353 

10 3740 2214 1340 1112 353 

11 3740 3132 1605 1114 556 

12 3755 3132 1605 1245 556 

13 4707 3563 1735 1245 570 

14 4707 3563 1735 1262 789 

15 5690 3891 2100 1262 789 
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Table 4.4: Natural frequencies (GHz) of a cantilever zigzag (a) (15,0), and (b) 

(20,0) SWNT 

(a) 
Length 

(nm) 
1.136 1.988 4.118 7.952 15.62 

Mode 

Number 

1 976 654 217 64 17 

2 976 654 217 64 17 

3 1451 704 563 343 102 

4 1451 704 563 343 102 

5 1733 1446 712 372 190 

6 1733 1520 742 551 268 

7 2452 1520 742 551 268 

8 2818 1606 925 575 294 

9 2818 1606 925 581 484 

10 3073 2045 1101 581 484 

11 3073 2045 1240 681 549 

12 3129 2173 1240 681 549 

13 3129 2173 1565 812 554 

14 3661 2230 1565 812 554 

15 3661 2872 1650 882 568 

(b) 
Length 

(nm) 
1.136 1.988 4.118 7.952 15.62 

Mode 

Number 

1 928 499 270 84 23 

2 928 499 270 84 23 

3 1117 795 333 312 132 

4 1117 795 333 312 132 

5 1512 938 627 364 190 

6 1512 938 627 364 295 

7 1841 1446 713 372 309 

8 1841 1493 884 410 309 

9 2452 1493 884 410 316 

10 2578 1503 994 546 316 

11 2578 1503 994 546 332 

12 2667 1724 1004 577 332 

13 2667 1724 1004 833 342 

14 2858 2130 1104 833 342 

15 2858 2130 1237 874 403 
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Table 4.5: Natural frequencies (GHz) of a cantilever chiral (a) (4,2), and (b) (8,4) 

SWNT 

(a) 
Length 

(nm) 
1.12788 2.25576 4.51152 7.89516 15.79032 

Mode 

Number 

1 876 259 69 23 6 

2 894 265 70 23 6 

3 2390 1212 397 140 36 

4 2936 1280 405 142 36 

5 3041 1297 608 348 100 

6 3390 1995 1004 375 101 

7 3585 2781 1008 380 174 

8 3888 2913 1020 579 193 

9 4186 2929 1751 695 194 

10 4704 3486 1772 703 290 

11 5125 3700 1823 1044 313 

12 5372 3742 2575 1079 314 

13 5394 4570 2597 1089 456 

14 2858 2130 1104 833 342 

15 2858 2130 1237 874 403 

(b) 
Length 

(nm) 
1.12788 2.25576 4.51152 7.89516 15.79032 

Mode 

Number 

1 1298 475 138 47 12 

2 1320 475 138 47 12 

3 1341 1113 645 268 73 

4 1341 1130 684 268 73 

5 2535 1284 684 370 185 

6 2931 1550 1017 584 197 

7 2998 1570 1095 667 197 

8 2998 1782 1107 667 293 

9 3098 1782 1174 1095 367 

10 3615 2009 1180 1105 367 

11 3698 2570 1405 1108 555 

12 3698 2632 1414 1121 572 

13 3919 2984 1545 1123 572 

14 4166 2984 1818 1146 802 

15 4166 3301 1831 1146 802 
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Table 4.6: Natural frequencies (GHz) of a cantilever chiral (a) (12,6), and (b) (16,8) 

SWNT 

(a) 
Length 

(nm) 
1.12788 2.25576 4.51152 7.89516 15.79032 

Mode 

Number 

1 956 566 196 70 18 

2 956 566 196 70 18 

3 1395 613 496 363 107 

4 1476 613 496 363 107 

5 1479 1290 653 374 187 

6 1479 1290 654 483 277 

7 2258 1299 654 483 277 

8 2314 1378 836 518 293 

9 2314 1406 836 518 488 

10 2553 1717 1019 585 488 

11 2553 1760 1091 636 493 

12 2581 1913 1091 636 493 

13 2645 1913 1366 842 494 

14 2703 2010 1384 842 494 

15 2703 2417 1445 856 508 

(b) 
Length 

(nm) 
1.12788 2.25576 4.51152 7.89516 15.79032 

Mode 

Number 

1 952 426 244 90 24 

2 952 426 244 90 24 

3 1027 699 293 277 136 

4 1027 699 293 277 136 

5 1529 789 557 339 188 

6 1529 789 557 339 274 

7 1565 1256 656 376 274 

8 1640 1256 779 428 282 

9 2313 1278 779 428 282 

10 2313 1278 873 541 294 

11 2354 1309 873 541 312 

12 2492 1394 913 585 312 

13 2492 1470 913 775 339 

14 2575 1754 1019 775 339 

15 2610 1802 1101 800 380 
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Figure 4.1: Natural frequency of a cantilever armchair (a) (3,3), and (b) (5,5) 

SWNT 
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Figure 4.2: Natural frequency of a cantilever armchair (a) (10,10), and (b) (12,12) 

SWNT 
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Figure 4.3: Natural frequency of a cantilever zigzag (a) (5,0), and (b) (10,0) SWNT 

 

 

 

 

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15N
at

u
ra

l F
re

q
u

en
cy

 (
G

H
z)

Mode Number

(a)

1.136 1.988 4.118 7.952 15.62Length (nm):

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15N
at

u
ra

l F
re

q
u

en
cy

 (
G

H
z)

Mode Number

(b)

1.136 1.988 4.118 7.952 15.62Length (nm):



52 

 

 

 

Figure 4.4: Natural frequency of a cantilever zigzag (a) (15,0), and (b) (20,0) 

SWNT 
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Figure 4.5: Natural frequency of a cantilever chiral (a) (4,2), and (b) (8,4) SWNT 
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Figure 4.6: Natural frequency of a cantilever chiral (a) (12,6), and (b) (16,8) SWNT 
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Figure 4.7: Mode shapes of a cantilever armchair (10,10) SWNT
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In vibrational analysis, the first two mode shapes usually hold the most 

significance [49]. Nevertheless, as this study aims to analyze SWNTs 

comprehensively, the first 15 mode shapes have been investigated. Between 

all the SWNTs, the effect of length is the most prominent. So, when the length 

increases, the natural frequency of the nanotube will decrease. Moreover, the 

diameter does not have the same effect on the nanotube. Depending on the 

size of the diameter and the SWNT's chirality, the nanotube's natural 

frequency can increase and decrease. Still, the increase in diameter will result 

in the initial mode shapes increasing less than the ones with smaller diameters. 

Additionally, the natural frequencies for shorter SWNTs are extremely high, 

indicating that nanotubes with these lengths are unrealistic. Thus the lengthier 

nanotubes show a more realistic representation of the SWNTs that can be 

utilized in different industries. Also, regarding the chirality of SWNTs, the 

effect of chirality could change the natural frequency up to 20% if we have 

shorter SWNTs. Still, when the nanotube is longer, this effect could decrease 

to around 2%, sometimes even 0%. So, it can be concluded that even though 

chirality is one of the prominent characteristics of the SWNTs, its effect on 

natural frequency could be negligible if we have long SWNTs. 

4.1.2 Bridge Boundary Condition 

The modal analysis of three different configurations of SWNTs (armchair, 

zigzag, and chiral) under the bridge boundary condition (Figure 3.9) was done 

just like in the previous section. The only difference between this section and 

the previous one is the change in the boundary condition. The following are 

the SWNTs studied under the bridge boundary condition: 

o Armchair (n=m): (3,3), (5,5), (10,10), and (12,12) 

o Zigzag (n,0): (5,0), (10,0), (15,0), and (20,0) 

o Chiral (n≠m): (4,2), (8,4), (12,6), and (16,8) 
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The results of the modal analysis of the pristine armchair SWNTs are depicted 

in Table 4.7, Table 4.8, Figure 4.8, and Figure 4.9. Also, the modal analysis 

results for pristine zigzag SWNTs are demonstrated in Table 4.9, Table 4.10, 

Figure 4.10, and Figure 4.11. In the same vein, the results of the modal 

analysis of pristine chiral SWNTs are shown in Table 4.11, Table 4.12,  Figure 

4.12, and Figure 4.13. The mode shapes of a bridge armchair (10,10) are 

demonstrated in Figure 4.14. Comparing this figure with Figure 4.7 shows that 

the change of boundary condition in SWNTs can also significantly affect their 

mode shapes.  
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Table 4.7: Natural frequencies (GHz) of a bridge armchair (a) (3,3), and (b) (5,5) 

SWNT 

(a) 
Length 

(nm) 
0.9838 1.9676 3.9352 7.8704 15.7408 

Mode 

Number 

1 3722 1474 505 145 38 

2 3722 1474 505 145 38 

3 5741 2825 1184 375 103 

4 5741 3131 1184 375 103 

5 5884 3132 1385 684 196 

6 7480 4703 2006 684 196 

7 7481 4904 2006 686 315 

8 8747 4904 2366 1048 315 

9 8747 5089 2770 1048 341 

10 9108 5089 2905 1184 456 

11 11181 5454 2905 1371 456 

12 11181 5454 3852 1450 592 

13 11637 5651 3852 1450 615 

14 12264 6471 4156 1878 615 

15 12813 6471 4693 1878 682 

(b) 
Length 

(nm) 
0.9838 1.9676 3.9352 7.8704 15.7408 

Mode 

Number 

1 3505 1859 720 228 62 

2 3505 1859 720 228 62 

3 4271 2040 1480 560 165 

4 4271 2040 1570 560 165 

5 5744 3014 1570 734 309 

6 5744 3056 1723 979 309 

7 6257 3056 1723 979 365 

8 7018 3750 1932 1184 484 

9 7018 3750 1932 1446 484 

10 8279 4553 2327 1446 592 

11 8279 4553 2327 1467 685 

12 8462 4688 2365 1675 685 

13 8609 4925 2560 1675 731 

14 8609 4925 2560 1707 904 

15 8713 5508 2878 1707 904 
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Table 4.8: Natural frequencies (GHz) of a bridge armchair (a) (10,10), and (b) 

(12,12) SWNT 

(a) 
Length 

(nm) 
0.9838 1.9676 3.9352 7.8704 15.7408 

Mode 

Number 

1 2979 1369 651 370 116 

2 2979 1369 651 370 116 

3 3081 1574 950 444 286 

4 3081 1574 950 444 286 

5 3573 2054 1183 574 377 

6 3573 2054 1183 574 415 

7 3823 2496 1235 757 415 

8 3823 2496 1235 806 431 

9 4627 2571 1473 806 431 

10 4674 2571 1473 808 471 

11 4775 2692 1527 808 471 

12 5986 2692 1848 1100 503 

13 6057 3107 1848 1100 503 

14 6057 3258 1872 1176 541 

15 6155 3258 1872 1176 541 

(b) 
Length 

(nm) 
0.9838 1.9676 3.9352 7.8704 15.7408 

Mode 

Number 

1 2777 1319 610 339 133 

2 2777 1319 610 339 133 

3 2957 1358 901 404 290 

4 2957 1358 901 404 290 

5 3053 1854 982 519 317 

6 3053 1854 982 519 317 

7 3509 2028 1187 760 321 

8 3509 2028 1187 795 321 

9 3743 2374 1196 795 378 

10 3743 2374 1196 821 379 

11 3960 2617 1532 821 379 

12 4719 2617 1605 856 478 

13 4812 2694 1605 856 478 

14 5580 2694 1657 875 552 

15 5639 2749 1657 875 552 
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Table 4.9: Natural frequencies (GHz) of a bridge zigzag (a) (5,0), and (b) (10,0) 

SWNT 

(a) 
Length 

(nm) 
1.136 1.988 4.118 7.952 15.62 

Mode 

Number 

1 3408 1551 437 123 32 

2 3408 1551 437 123 32 

3 5030 2941 1116 332 89 

4 5801 3458 1116 332 89 

5 5801 3458 1435 632 172 

6 6668 4337 2010 632 172 

7 6668 5266 2010 746 282 

8 7493 5266 2108 1010 282 

9 8077 5534 2849 1010 380 

10 8077 5534 3030 1094 417 

11 9263 5710 3030 1454 417 

12 9624 5798 4103 1454 558 

13 9624 5798 4103 1488 574 

14 11297 6876 4202 1949 574 

15 11297 6876 4223 1949 754 

(b) 
Length 

(nm) 
1.136 1.988 4.118 7.952 15.62 

Mode 

Number 

1 2913 1748 743 249 70 

2 2913 1748 743 249 70 

3 3495 1947 1306 614 186 

4 3495 1947 1306 614 186 

5 4403 2952 1442 749 349 

6 4403 2975 1558 1074 349 

7 5040 2975 1558 1074 382 

8 5499 3722 1618 1148 549 

9 5500 3722 1618 1253 549 

10 6148 3735 2042 1253 585 

11 6148 3735 2042 1291 763 

12 6703 4457 2209 1291 776 

13 6703 4457 2599 1375 776 

14 7383 4473 2599 1375 1025 

15 7383 4473 2691 1495 1025 
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Table 4.10: Natural frequencies (GHz) of a bridge zigzag (a) (15,0), and (b) (20,0) 

SWNT 

(a) 
Length 

(nm) 
1.136 1.988 4.118 7.952 15.62 

Mode 

Number 

1 2561 1406 711 335 103 

2 2561 1406 711 335 103 

3 2790 1903 871 570 262 

4 2790 1903 871 570 262 

5 3309 1990 1174 664 382 

6 3309 1990 1174 664 471 

7 3870 2666 1443 750 471 

8 3870 2666 1606 762 551 

9 4908 2851 1606 762 551 

10 4908 2851 1751 858 563 

11 5041 2954 1751 858 563 

12 5141 3213 1792 1132 591 

13 5141 3213 1792 1132 591 

14 5270 3542 1801 1158 591 

15 5434 3542 1801 1260 643 

(b) 
Length 

(nm) 
1.136 1.988 4.118 7.952 15.62 

Mode 

Number 

1 2316 1344 592 355 131 

2 2316 1344 592 355 131 

3 2399 1370 925 392 313 

4 2399 1370 925 392 313 

5 2743 1955 951 525 318 

6 2743 1955 951 525 318 

7 3053 1970 1141 750 337 

8 3053 1970 1141 797 337 

9 3581 2378 1220 797 382 

10 3581 2378 1220 840 396 

11 4048 2506 1443 840 396 

12 4559 2506 1655 885 492 

13 4559 2801 1655 885 492 

14 4590 2801 1722 935 552 

15 4590 2941 1722 935 552 
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Table 4.11: Natural frequencies (GHz) of a bridge chiral (a) (4,2), and (b) (8,4) 

SWNT 

(a) 
Length 

(nm) 
1.12788 2.25576 4.51152 7.89516 15.79032 

Mode 

Number 

1 3262 1257 404 143 37 

2 3431 1294 409 144 37 

3 5162 2525 983 374 101 

4 5350 2736 999 377 101 

5 5370 2815 1242 689 193 

6 6715 4079 1707 696 194 

7 6961 4463 1737 705 312 

8 7346 4562 2043 1066 314 

9 7680 4686 2481 1077 351 

10 8059 4688 2512 1166 454 

11 9942 5007 2556 1409 456 

12 10176 5116 3365 1487 583 

13 10386 5122 3417 1503 616 

14 10793 5894 3712 1938 620 

15 11512 5930 4061 1960 701 

(b) 
Length 

(nm) 
1.12788 2.25576 4.51152 7.89516 15.79032 

Mode 

Number 

1 2859 1497 665 267 74 

2 2940 1511 665 267 74 

3 3724 1695 1164 641 195 

4 3724 1695 1165 641 195 

5 4098 2470 1318 748 361 

6 4098 2504 1378 1101 361 

7 5486 2675 1383 1101 372 

8 5744 3309 1441 1119 561 

9 5901 3309 1441 1119 561 

10 6506 3344 1774 1163 588 

11 6506 3344 1786 1164 745 

12 6711 3786 2060 1177 785 

13 6727 3828 2304 1261 785 

14 6727 3858 2322 1263 1027 

15 6739 3858 2330 1423 1109 
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Table 4.12: Natural frequencies (GHz) of a bridge chiral (a) (12,6), and (b) (16,8) 

SWNT 

(a) 
Length 

(nm) 
1.12788 2.25576 4.51152 7.89516 15.79032 

Mode 

Number 

1 2685 1205 632 352 107 

2 2685 1205 632 352 107 

3 2708 1654 788 515 269 

4 2766 1663 788 515 269 

5 3520 1791 1034 624 377 

6 3520 1792 1034 624 478 

7 3620 2333 1334 757 478 

8 3620 2333 1431 785 492 

9 4939 2402 1431 785 492 

10 5087 2425 1586 834 506 

11 5087 2706 1587 834 506 

12 5294 2843 1587 1115 537 

13 5294 2843 1590 1115 537 

14 5296 3295 1598 1179 589 

15 5437 3295 1598 1287 595 

(b) 
Length 

(nm) 
1.12788 2.25576 4.51152 7.89516 15.79032 

Mode 

Number 

1 2370 1178 528 331 135 

2 2370 1178 528 331 135 

3 2545 1179 846 408 280 

4 2545 1179 846 408 280 

5 2640 1720 846 518 308 

6 2692 1727 846 518 308 

7 3170 1786 1019 760 324 

8 3170 1786 1019 792 324 

9 3361 2042 1075 792 373 

10 3361 2042 1075 800 373 

11 3810 2260 1339 800 378 

12 4352 2260 1449 848 475 

13 4352 2373 1449 848 475 

14 4864 2393 1534 862 557 

15 4874 2599 1534 862 557 
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Figure 4.8: Natural frequencies (GHz) of a bridge armchair (a) (3,3), and (b) (5,5) 

SWNT 
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Figure 4.9: Natural frequencies (GHz) of a bridge armchair (a) (10,10), and (b) 

(12,12) SWNT 
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Figure 4.10: Natural frequencies (GHz) of a bridge zigzag (a) (5,0), and (b) (10,0) 

SWNT 
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Figure 4.11: Natural frequencies (GHz) of a bridge zigzag (a) (15,0), and (b) (20,0) 

SWNT 
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Figure 4.12: Natural frequencies (GHz) of a bridge chiral (a) (4,2), and (b) (8,4) 

SWNT 
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Figure 4.13: Natural frequencies (GHz) of a bridge chiral (a) (12,6), and (b) (16,8) 

SWNT 
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Figure 4.14: Mode shapes of a bridge armchair (10,10) SWNT
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Since similar SWNTs were studied under different boundary conditions, their results 

can be compared. Due to constrained movement because of the nature of the bridge 

boundary condition, the SWNTs under this boundary condition have higher natural 

frequency compared (up to 300%) to the corresponding SWNTs with cantilever 

boundary conditions. It is important to note that increasing the length of the 

nanotubes will not lessen the impact of the constraint movement of the bridge 

boundary condition, so the natural frequency of longer SWNTs is still drastically 

affected by the change in the boundary condition. Similar to the cantilever boundary 

condition, the increase in length decreases the natural frequency. Moreover, the 

increase in diameter can increase or decrease the natural frequency depending on the 

chirality or the length of the SWNT. Nevertheless, the impact of length is much more 

evident than the impact of diameter. Furthermore, unlike the cantilever boundary 

condition, the effect of chirality is also quite significant due to the constraint 

movement of the SWNTs. Therefore, the change in the chirality of the SWNTs can 

also make quite a bit of difference in the natural frequency, even for the lengthier 

SWNTs. 

4.2 Modal Analysis of Defective Carbon Nanotubes 

The previous sections discussed the importance of conducting modal analysis on 

pristine SWNTs. However, pristine SWNTs are not a realistic representation of the 

SWNTs that can be implemented in various industries. Because SWNTs during the 

synthesis cannot be synthesized perfectly, thus, their structure is exposed to some 

defections. These SWNTs are called defective carbon nanotubes. The defections on 

carbon nanotubes will affect their natural frequency because their structure will be 

changed. So, this section is dedicated to discussing the effects of different defections 

on the structure of SWNTs. Similar to pristine SWNTs, the modal analysis is 

conducted on defective SWNTs for both cantilever and bridge boundary conditions. 

Moreover, this section aims to discuss the effects of the number of vacancy defects 

and Stone-Wales defects on SWNTs with various lengths, diameters, and chirality. 
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4.2.1 Cantilever Boundary Condition 

The vacancy and Stone-Wales Defect are two common defects to which SWNTs can 

be exposed during their purification process [50-52]. And their effects can change 

the structures of pristine SWNTs. This can make the implementation of this material 

in nanocomposites and nanomaterials challenging. Thus, it is crucial to see how the 

number of defects introduced to the structure can affect the natural frequency of 

SWNTs. The number of defects introduced to the structure would be 1, 2, 4, and 6, 

and their positions are depicted in Figure 3.7. The type of defects studied are single 

vacancy, double vacancy, and Stone-Wales. These defects are illustrated in Figure 

1.6. The defects are first analyzed independently, then a combination of them is 

introduced to the SWNT to see how it affects the natural frequency of this material. 

The SWNTs studied are the following:  

o Armchair (n=m): (5,5), and (10,10) 

o Zigzag (n,0): (10,0), and (15,0) 

o Chiral (n≠m): (8,4), and (12,6) 

The diameters of the different SWNTs selected for this study are quite close to one 

another  (Table 3.2, Table 3.4, and  

Table 3.6), so their results can be compared. Also, the effect of the defects on these 

nanotubes has been studied for a specific length for each nanotube. The length 

selected for the armchair configuration is 7.8704 nm, for the zigzag configuration is 

7.952 nm, and for the chiral configuration is 7.89516 nm. Furthermore, the similar 

lengths of the SWNTs allow for meaningful comparisons of their outcomes.  

The results of the modal analysis of defective cantilever armchair SWNT are 

depicted in Table 4.13, Table 4.14, and Table 4.15. Similarly, the modal analysis 

results of defective cantilever zigzag SWNT are shown in Table 4.16, Table 4.17, 

and Table 4.18. Furthermore, the results of the modal analysis of defective cantilever 

chiral SWNT are presented in Table 4.19, Table 4.20, and Table 4.21. 

 



 

75 

 

In order to see the effects of the vacancy and Stone-Wales defects together, a new 

model is created. In this model, three double vacancy defects and three Stone-Wales 

defects are introduced to the SWNT, and then the modal analysis is conducted. This 

model is a representation of a real SWNT that can be synthesized in a lab. This model 

is studied for (10,10), (15,0), and (12,6) SWNTs. The results of the modal analysis 

of this model for all three SWNTs are depicted in Table 4.22. The mode shapes of a 

cantilever armchair (10,10) with three double vacancy defects and three Stone-Wales 

defects are shown in Figure 4.15. 

 

 





 

77 

 

Table 4.13: Natural frequencies (GHz) of a cantilever armchair (a) (5,5), and (b) 

(10,10) SWNT with single vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 39 37 37 37 36 

2 39 39 39 39 39 

3 228 225 224 223 217 

4 228 226 225 224 223 

5 363 354 347 346 339 

6 579 570 568 558 543 

7 579 576 570 568 567 

8 588 582 577 574 569 

9 1015 993 995 976 962 

10 1015 1014 1004 987 978 

11 1088 1072 1066 1044 1012 

12 1498 1481 1458 1434 1419 

13 1498 1493 1491 1459 1433 

14 1643 1643 1643 1614 1612 

15 1643 1643 1643 1614 1612 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 76 75 75 73 73 

2 76 75 75 75 75 

3 374 372 371 362 358 

4 384 380 379 376 373 

5 384 380 380 378 375 

6 411 405 404 404 403 

7 411 408 408 408 403 

8 451 447 447 446 443 

9 451 447 447 447 446 

10 587 583 582 576 573 

11 592 587 585 581 576 

12 592 587 586 584 583 

13 837 828 822 818 815 

14 837 828 828 823 818 

15 876 866 863 854 851 
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Table 4.14: Natural frequencies (GHz) of a cantilever armchair (a) (5,5), and (b) 

(10,10) SWNT with double vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 39 39 39 33 32 

2 39 39 40 39 39 

3 228 228 223 217 199 

4 228 228 227 223 222 

5 363 363 363 341 332 

6 579 573 537 519 488 

7 579 576 574 551 543 

8 588 589 590 566 562 

9 1015 987 943 925 907 

10 1015 1002 1003 982 951 

11 1088 1083 1050 1030 990 

12 1498 1424 1410 1373 1276 

13 1498 1479 1457 1420 1414 

14 1643 1628 1626 1626 1612 

15 1643 1636 1634 1634 1625 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 76 76 76 71 70 

2 76 76 76 76 76 

3 374 375 375 362 358 

4 384 383 382 377 368 

5 384 384 383 379 378 

6 411 410 409 409 408 

7 411 411 411 411 411 

8 451 451 451 449 447 

9 451 451 451 450 450 

10 587 588 584 571 566 

11 592 591 590 581 571 

12 592 592 590 588 587 

13 837 831 814 810 804 

14 837 834 833 825 817 

15 876 872 861 852 837 
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Table 4.15: Natural frequencies (GHz) of a cantilever armchair (a) (5,5), and (b) 

(10,10) SWNT with Stone-Wales defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 39 38 37 37 36 

2 39 38 37 37 37 

3 228 225 224 223 219 

4 228 225 225 224 223 

5 363 358 353 350 345 

6 579 572 563 557 538 

7 579 576 575 567 551 

8 588 580 577 572 559 

9 1015 1009 997 967 935 

10 1015 1013 1005 973 949 

11 1088 1074 1064 1052 1039 

12 1498 1489 1419 1367 1355 

13 1498 1496 1473 1420 1414 

14 1643 1500 1491 1471 1460 

15 1643 1586 1573 1572 1545 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 76 75 74 73 73 

2 76 75 74 74 73 

3 374 372 369 366 363 

4 384 381 380 375 373 

5 384 382 382 379 377 

6 411 406 399 395 391 

7 411 409 407 406 404 

8 451 448 448 445 442 

9 451 450 449 448 447 

10 587 584 579 574 562 

11 592 590 590 582 571 

12 592 592 591 589 584 

13 837 835 829 807 788 

14 837 837 835 829 823 

15 876 873 871 860 846 
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Table 4.16: Natural frequencies (GHz) of a cantilever zigzag (a) (10,0), and (b) 

(15,0) SWNT with single vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 43 41 40 40 39 

2 43 42 42 43 43 

3 248 244 244 243 240 

4 248 246 245 244 243 

5 372 365 360 360 354 

6 570 563 557 558 553 

7 632 624 621 617 598 

8 632 630 627 619 619 

9 1112 1076 1075 1056 1051 

10 1112 1112 1101 1077 1068 

11 1114 1113 1111 1109 1077 

12 1245 1245 1245 1232 1227 

13 1245 1245 1245 1236 1232 

14 1262 1262 1259 1255 1248 

15 1262 1262 1261 1257 1253 

(b) 
Number of 

defects 
 1 2 4 6 

Mode 

Number 

1 64 62 61 62 61 

2 64 64 64 64 64 

3 343 340 336 336 334 

4 343 340 340 340 337 

5 372 369 366 366 363 

6 551 551 551 547 545 

7 551 551 551 550 550 

8 575 571 567 568 564 

9 581 580 580 578 576 

10 581 580 580 579 579 

11 681 679 678 676 669 

12 681 680 679 677 676 

13 812 800 798 794 791 

14 812 812 810 804 795 

15 882 878 877 870 867 
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Table 4.17: Natural frequencies (GHz) of a cantilever zigzag (a) (10,0), and (b) 

(15,0) SWNT with double vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 43 43 43 38 37 

2 43 43 43 42 42 

3 248 248 245 237 229 

4 248 248 247 241 237 

5 372 373 372 345 333 

6 570 571 570 548 538 

7 632 627 609 598 563 

8 632 631 625 607 607 

9 1112 1079 1033 999 982 

10 1112 1102 1083 1041 1016 

11 1114 1115 1106 1093 1038 

12 1245 1237 1230 1230 1225 

13 1245 1241 1236 1236 1233 

14 1262 1258 1258 1255 1248 

15 1262 1260 1259 1257 1252 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 64 64 64 60 59 

2 64 64 64 64 64 

3 343 342 340 325 320 

4 343 343 342 338 330 

5 372 373 372 361 357 

6 551 549 547 547 546 

7 551 550 550 550 549 

8 575 576 576 561 556 

9 581 579 579 578 576 

10 581 580 579 578 577 

11 681 679 677 673 662 

12 681 680 678 674 672 

13 812 806 792 778 767 

14 812 811 805 790 780 

15 882 878 870 862 860 
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Table 4.18: Natural frequencies (GHz) of a cantilever zigzag (a) (10,0), and (b) 

(15,0) SWNT with Stone-Wales defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 43 42 41 40 39 

2 43 42 41 41 40 

3 248 245 245 242 238 

4 248 246 246 244 241 

5 372 367 364 360 354 

6 570 561 553 545 534 

7 632 629 621 608 581 

8 632 631 627 615 596 

9 1112 1100 1069 1029 1004 

10 1112 1105 1087 1051 1035 

11 1114 1110 1100 1085 1070 

12 1245 1191 1173 1168 1163 

13 1245 1233 1225 1225 1207 

14 1262 1255 1253 1233 1211 

15 1262 1257 1257 1252 1243 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 64 63 63 61 60 

2 64 64 64 62 62 

3 343 342 341 337 333 

4 343 342 341 338 336 

5 372 371 370 364 360 

6 551 551 551 533 528 

7 551 551 551 545 543 

8 575 572 570 559 551 

9 581 580 577 572 566 

10 581 580 580 577 575 

11 681 678 667 663 640 

12 681 680 677 675 666 

13 812 807 794 790 779 

14 812 808 798 796 784 

15 882 871 860 845 829 
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Table 4.19: Natural frequencies (GHz) of a cantilever chiral (a) (8,4), and (b) (12,6) 

SWNT with single vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 47 45 44 45 44 

2 47 47 47 47 47 

3 268 265 263 263 260 

4 268 265 265 264 262 

5 370 363 358 358 353 

6 584 577 572 573 568 

7 667 656 654 649 636 

8 667 666 662 656 653 

9 1095 1086 1083 1063 1051 

10 1105 1095 1095 1084 1083 

11 1108 1105 1105 1090 1086 

12 1121 1120 1119 1115 1099 

13 1123 1123 1122 1118 1112 

14 1146 1134 1133 1121 1116 

15 1146 1146 1137 1133 1118 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 70 68 67 67 67 

2 70 69 69 69 69 

3 363 358 353 353 348 

4 363 360 360 359 358 

5 374 371 370 370 368 

6 483 489 489 483 482 

7 483 489 489 488 487 

8 518 521 521 520 519 

9 518 522 521 521 520 

10 585 581 578 579 576 

11 636 637 636 635 630 

12 636 638 637 636 635 

13 842 827 821 818 817 

14 842 841 839 836 826 

15 856 855 854 848 845 
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Table 4.20: Natural frequencies (GHz) of a cantilever chiral (a) (8,4), and (b) (12,6) 

SWNT with double vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 47 43 41 41 41 

2 47 47 47 47 46 

3 268 259 259 256 248 

4 268 264 261 261 258 

5 370 360 352 353 346 

6 584 567 557 559 549 

7 667 651 648 631 597 

8 667 662 651 642 643 

9 1095 1069 1067 1029 1018 

10 1105 1095 1095 1037 1032 

11 1108 1105 1105 1067 1061 

12 1121 1120 1118 1083 1082 

13 1123 1123 1120 1116 1087 

14 1146 1131 1122 1118 1112 

15 1146 1145 1131 1129 1115 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 70 66 64 65 63 

2 70 69 69 69 69 

3 363 355 349 349 343 

4 363 359 359 354 345 

5 374 371 370 369 365 

6 483 483 483 480 480 

7 483 483 483 483 482 

8 518 517 517 516 514 

9 518 518 518 517 517 

10 585 575 569 568 562 

11 636 634 632 623 614 

12 636 635 633 632 630 

13 842 823 820 804 792 

14 842 842 836 817 818 

15 856 854 850 840 831 
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Table 4.21: Natural frequencies (GHz) of a cantilever chiral (a) (8,4), and (b) (12,6) 

SWNT with Stone-Wales defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 47 46 45 45 44 

2 47 46 45 45 45 

3 268 266 265 263 256 

4 268 267 266 264 260 

5 370 365 361 359 355 

6 584 575 567 562 552 

7 667 664 657 639 617 

8 667 666 664 647 631 

9 1095 1051 1020 1013 1008 

10 1105 1077 1061 1051 1039 

11 1108 1104 1098 1056 1043 

12 1121 1120 1114 1070 1061 

13 1123 1122 1121 1112 1091 

14 1146 1139 1124 1119 1104 

15 1146 1145 1136 1122 1112 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 70 69 68 67 66 

2 70 69 69 68 68 

3 363 361 359 357 351 

4 363 362 360 359 353 

5 374 374 372 366 364 

6 483 489 489 472 468 

7 483 489 489 484 483 

8 518 521 520 517 508 

9 518 522 521 520 516 

10 585 583 581 570 564 

11 636 638 629 622 603 

12 636 639 636 634 627 

13 842 839 816 814 805 

14 842 840 828 824 813 

15 856 854 850 827 823 
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Table 4.22: Natural frequencies (GHz) of (a) cantilever armchair (10,10), (b) 

cantilever zigzag (15,0), and (c) cantilever chiral (12,6) with three double vacancy 

and three Stone-Wales defects. 

(a) 
Number of 

defects 
0 6 (c) 

Number 

of defects 
0 6 

Mode 

Number 

1 76 76 

Mode 

Number 

1 70 64 

2 76 76 2 70 67 

3 374 369 3 363 337 

4 384 373 4 363 352 

5 384 374 5 374 361 

6 411 403 6 483 460 

7 411 409 7 483 476 

8 451 439 8 518 510 

9 451 447 9 518 514 

10 587 565 10 585 559 

11 592 583 11 636 615 

12 592 584 12 636 627 

13 837 802 13 842 802 

14 837 818 14 842 815 

15 876 846 15 856 839 

(b) 
Number of 

defects 
0 6 

Mode 

Number 

1 64 57 

2 64 62 

3 343 318 

4 343 333 

5 372 353 

6 551 530 

7 551 542 

8 575 544 

9 581 574 

10 581 577 

11 681 659 

12 681 669 

13 812 775 

14 812 783 

15 882 853 
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Figure 4.15: Mode shapes of a cantilever armchair (10,10) with three double vacancy and three Stone-Wales defects
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The results of the modal analysis of cantilever defective carbon nanotubes indicate 

that introducing defects has the most negligible effect on the second mode shape of 

any nanotube. Still, the defects affect the first mode shape more, which can decrease 

the natural frequency for the first mode shape by up to 1%. Moreover, the effects of 

defects on SWNTs are more evident as the mode shapes are higher, and it can 

decrease the natural frequency of SWNT by up to 10%, which is quite a significant 

margin. It also has to be considered that single vacancy defect has the least impact 

on the natural frequency of the SWNT, as it is the simplest form of defect that can 

be introduced to the structure. Furthermore, as the number of double vacancy and 

Stone-Wales defects increase in the structure, the natural frequency of the SWNT is 

getting decreased by up to 10%. 

In this model, the first two mode shapes, which are the most significant mode shapes 

of the SWNT, are not affected in the armchair configuration. But in zigzag and chiral, 

the first two mode shapes are decreased by approximately 1%. Moreover, other mode 

shapes for all three different chirality got reduced by up to 5%, which goes to show 

the results for pristine SWNTs are not accurate. If SWNTs are to be implemented in 

different industries, the analysis for defective SWNTs is required to be conducted 

more comprehensively.  

4.2.2 Bridge Boundary Condition 

The SWNTs studied for this section are like the previous section. So, the defective 

SWNTs studied for this section are: 

o Armchair (n=m): (5,5), and (10,10) 

o Zigzag (n,0): (10,0), and (15,0) 

o Chiral (n≠m): (8,4), and (12,6) 

 

The results of the modal analysis of defective bridge armchair SWNT are depicted 

in Table 4.23, Table 4.24, and Table 4.25. Similarly, the modal analysis results of 
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defective bridge zigzag SWNT are shown in Table 4.26, Table 4.27, and Table 4.28. 

Furthermore, the results of the modal analysis of defective bridge chiral SWNT are 

presented in Table 4.29, Table 4.30, and Table 4.31.Just like in the previous section, 

a realistic model is being analyzed. This model consists of three double vacancy 

defects and three Stone-Wales defects introduced to the pristine SWNT. The SWNTs 

studied are (10,10), (15,0), and (12,6). The results for the modal analysis of this 

model for all three SWNTs are depicted in Table 4.32. The mode shapes of a bridge 

armchair (10,10) with three double vacancy defects and three Stone-Wales defects 

are illustrated in Figure 4.16. 
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Table 4.23: Natural frequencies (GHz) of a bridge armchair (a) (5,5), and (b) 

(10,10) SWNT with single vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 228 225 225 221 218 

2 228 226 225 223 222 

3 560 551 549 541 533 

4 560 559 554 547 543 

5 734 718 710 682 679 

6 979 963 963 950 924 

7 979 978 968 958 956 

8 1184 1168 1163 1140 1140 

9 1446 1416 1406 1366 1341 

10 1446 1443 1440 1434 1396 

11 1467 1458 1452 1439 1438 

12 1675 1674 1667 1663 1645 

13 1675 1674 1672 1670 1662 

14 1707 1704 1694 1680 1663 

15 1707 1706 1700 1694 1686 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 370 364 362 357 356 

2 370 365 365 364 363 

3 444 440 440 439 436 

4 444 441 440 440 440 

5 574 569 568 565 561 

6 574 570 568 567 566 

7 757 743 739 732 731 

8 806 790 790 783 782 

9 806 800 795 793 787 

10 808 801 800 794 791 

11 808 802 801 797 793 

12 1100 1088 1083 1076 1074 

13 1100 1091 1090 1086 1076 

14 1176 1166 1164 1155 1154 

15 1176 1168 1166 1164 1157 
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Table 4.24: Natural frequencies (GHz) of a bridge armchair (a) (5,5), and (b) 

(10,10) SWNT with double vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 228 220 219 213 202 

2 228 225 224 220 220 

3 560 548 538 516 490 

4 560 557 546 540 538 

5 734 711 701 668 665 

6 979 959 946 925 907 

7 979 977 960 947 913 

8 1184 1141 1134 1079 1085 

9 1446 1405 1391 1353 1289 

10 1446 1437 1433 1413 1327 

11 1467 1457 1447 1433 1418 

12 1675 1674 1671 1667 1656 

13 1675 1674 1673 1671 1665 

14 1707 1705 1697 1687 1677 

15 1707 1706 1702 1697 1691 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 370 365 363 357 355 

2 370 366 365 360 357 

3 444 443 443 442 439 

4 444 444 444 443 443 

5 574 572 572 567 559 

6 574 574 572 570 569 

7 757 746 741 722 721 

8 806 794 789 780 776 

9 806 805 796 791 784 

10 808 807 805 797 790 

11 808 808 807 803 800 

12 1100 1095 1087 1074 1060 

13 1100 1097 1093 1081 1074 

14 1176 1164 1153 1139 1128 

15 1176 1176 1176 1174 1171 
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Table 4.25: Natural frequencies (GHz) of a bridge armchair (a) (5,5), and (b) 

(10,10) SWNT with Stone-Wales defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 228 227 226 224 220 

2 228 228 228 227 224 

3 560 557 551 543 521 

4 560 560 556 549 530 

5 734 731 725 718 702 

6 979 972 950 926 897 

7 979 975 956 935 913 

8 1184 1179 1172 1159 1135 

9 1446 1425 1369 1319 1298 

10 1446 1428 1377 1320 1308 

11 1467 1463 1460 1457 1437 

12 1675 1671 1600 1549 1523 

13 1675 1674 1666 1625 1557 

14 1707 1693 1679 1648 1625 

15 1707 1704 1689 1680 1630 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 370 368 367 366 363 

2 370 370 370 367 364 

3 444 444 443 442 436 

4 444 444 444 443 442 

5 574 574 570 563 542 

6 574 574 573 571 565 

7 757 755 752 749 740 

8 806 803 787 771 753 

9 806 805 796 793 780 

10 808 807 806 794 781 

11 808 808 808 798 794 

12 1100 1095 1065 1032 1030 

13 1100 1098 1091 1081 1080 

14 1176 1176 1171 1151 1128 

15 1176 1176 1175 1169 1156 
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Table 4.26: Natural frequencies (GHz) of a bridge zigzag (a) (10,0), and (b) (15,0) 

SWNT with single vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 249 245 245 241 239 

2 249 248 246 244 242 

3 614 605 601 592 588 

4 614 611 609 604 594 

5 749 737 730 708 702 

6 1074 1055 1057 1042 1026 

7 1074 1074 1063 1054 1049 

8 1148 1134 1127 1105 1100 

9 1253 1253 1251 1249 1241 

10 1253 1253 1252 1251 1247 

11 1291 1290 1285 1279 1267 

12 1291 1290 1288 1285 1276 

13 1375 1373 1366 1357 1355 

14 1375 1373 1369 1363 1359 

15 1495 1471 1472 1442 1417 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 335 333 331 327 325 

2 335 333 333 330 329 

3 570 570 569 568 566 

4 570 570 570 570 569 

5 664 663 661 659 652 

6 664 663 662 660 659 

7 750 737 730 725 721 

8 762 757 757 737 738 

9 762 761 760 757 749 

10 858 854 853 848 846 

11 858 857 854 850 846 

12 1132 1125 1124 1114 1105 

13 1132 1132 1125 1116 1115 

14 1158 1150 1146 1140 1134 

15 1260 1244 1245 1228 1212 
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Table 4.27: Natural frequencies (GHz) of a bridge zigzag (a) (10,0), and (b) (15,0) 

SWNT with double vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 249 241 241 234 231 

2 249 246 244 237 234 

3 614 593 586 573 561 

4 614 611 603 591 577 

5 749 725 714 666 655 

6 1074 1039 1042 1017 968 

7 1074 1073 1048 1032 1030 

8 1148 1123 1117 1076 1073 

9 1253 1253 1251 1249 1241 

10 1253 1253 1252 1250 1245 

11 1291 1289 1284 1280 1267 

12 1291 1290 1287 1281 1272 

13 1375 1371 1365 1356 1324 

14 1375 1374 1367 1358 1351 

15 1495 1448 1450 1387 1356 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 335 333 331 327 325 

2 335 333 333 330 329 

3 570 570 569 568 566 

4 570 570 570 570 569 

5 664 663 661 659 652 

6 664 663 662 660 659 

7 750 737 730 725 721 

8 762 757 757 737 738 

9 762 761 760 757 749 

10 858 854 853 848 846 

11 858 857 854 850 846 

12 1132 1125 1124 1114 1105 

13 1132 1132 1125 1116 1115 

14 1158 1150 1146 1140 1134 

15 1260 1244 1245 1228 1212 
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Table 4.28: Natural frequencies (GHz) of a bridge zigzag (a) (10,0), and (b) (15,0) 

SWNT with Stone-Wales defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 249 247 246 243 239 

2 249 248 247 246 239 

3 614 611 601 590 563 

4 614 612 602 592 572 

5 749 745 740 729 716 

6 1074 1063 1028 993 973 

7 1074 1065 1043 1017 1003 

8 1148 1139 1128 1108 1083 

9 1253 1252 1232 1217 1196 

10 1253 1253 1249 1237 1212 

11 1291 1286 1267 1249 1232 

12 1291 1290 1281 1261 1240 

13 1375 1360 1340 1317 1315 

14 1375 1372 1358 1345 1340 

15 1495 1476 1458 1401 1355 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 335 334 333 331 327 

2 335 335 334 332 328 

3 570 570 568 566 558 

4 570 570 569 569 566 

5 664 661 652 643 615 

6 664 663 660 657 646 

7 750 746 738 737 728 

8 762 759 749 743 732 

9 762 759 756 746 737 

10 858 848 834 809 798 

11 858 855 850 842 838 

12 1132 1104 1089 1061 1054 

13 1132 1126 1119 1105 1104 

14 1158 1152 1145 1134 1117 

15 1260 1245 1234 1193 1190 
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Table 4.29: Natural frequencies (GHz) of a bridge chiral (a) (8,4), and (b) (12,6) 

SWNT with single vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 267 264 263 260 258 

2 267 265 264 261 259 

3 641 631 627 617 614 

4 641 640 637 633 626 

5 748 737 730 707 700 

6 1101 1083 1084 1068 1051 

7 1101 1101 1091 1087 1083 

8 1119 1119 1117 1116 1110 

9 1119 1119 1118 1117 1113 

10 1163 1163 1157 1138 1134 

11 1164 1163 1159 1154 1144 

12 1177 1165 1161 1158 1151 

13 1261 1259 1255 1247 1243 

14 1263 1262 1256 1251 1248 

15 1423 1419 1415 1404 1396 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 352 349 347 342 340 

2 352 350 349 346 345 

3 515 515 515 514 513 

4 515 515 515 515 514 

5 624 623 622 619 615 

6 624 623 623 620 619 

7 757 747 738 730 724 

8 785 777 775 755 754 

9 785 784 783 781 776 

10 834 830 829 824 819 

11 834 833 831 828 826 

12 1115 1106 1105 1097 1093 

13 1115 1114 1111 1107 1098 

14 1179 1171 1167 1155 1151 

15 1287 1268 1267 1249 1243 
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Table 4.30: Natural frequencies (GHz) of a bridge chiral (a) (8,4), and (b) (12,6) 

SWNT with double vacancy defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 267 258 258 249 245 

2 267 264 262 256 254 

3 641 624 619 605 586 

4 641 636 626 615 608 

5 748 732 723 687 679 

6 1101 1071 1070 1045 1025 

7 1101 1100 1075 1058 1050 

8 1119 1118 1117 1093 1085 

9 1119 1119 1118 1117 1113 

10 1163 1146 1137 1118 1115 

11 1164 1163 1158 1155 1148 

12 1177 1163 1162 1159 1154 

13 1261 1260 1252 1243 1239 

14 1263 1261 1258 1254 1249 

15 1423 1418 1411 1388 1368 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 352 347 345 339 337 

2 352 349 348 345 341 

3 515 515 514 514 511 

4 515 515 515 514 514 

5 624 622 621 616 608 

6 624 624 622 620 619 

7 757 741 732 725 722 

8 785 775 775 758 756 

9 785 784 780 771 762 

10 834 830 826 819 815 

11 834 833 831 827 820 

12 1115 1107 1102 1085 1077 

13 1115 1112 1108 1100 1086 

14 1179 1159 1155 1142 1133 

15 1287 1267 1269 1257 1230 
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Table 4.31: Natural frequencies (GHz) of a bridge chiral (a) (8,4), and (b) (12,6) 

SWNT with Stone-Wales defect 

(a) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 267 266 265 262 255 

2 267 267 266 264 258 

3 641 638 628 613 592 

4 641 638 630 616 601 

5 748 746 742 732 719 

6 1101 1080 1029 996 990 

7 1101 1089 1064 1037 1033 

8 1119 1118 1114 1088 1070 

9 1119 1119 1117 1113 1078 

10 1163 1155 1144 1115 1100 

11 1164 1161 1155 1133 1109 

12 1177 1170 1160 1142 1115 

13 1261 1239 1227 1210 1206 

14 1263 1255 1244 1232 1228 

15 1423 1383 1379 1326 1254 

(b) 
Number of 

defects 
0 1 2 4 6 

Mode 

Number 

1 352 351 350 348 341 

2 352 352 351 349 343 

3 515 515 513 510 499 

4 515 515 515 514 509 

5 624 623 615 600 583 

6 624 624 622 617 610 

7 757 756 749 745 736 

8 785 783 770 764 756 

9 785 784 777 767 758 

10 834 829 818 790 786 

11 834 833 829 822 821 

12 1115 1100 1085 1063 1027 

13 1115 1112 1107 1100 1090 

14 1179 1175 1167 1156 1136 

15 1287 1276 1258 1222 1218 
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Table 4.32: Natural frequencies (GHz) of (a) bridge armchair (10,10), (b) bridge 

zigzag (15,0), and (c) bridge chiral (12,6) with three double vacancy and three 

Stone-Wales defects. 

(a) 
Number of 

defects 
0 6 (c) 

Number 

of defects 
0 6 

Mode 

Number 

1 370 350 

Mode 

Number 

1 352 341 

2 370 361 2 352 344 

3 444 431 3 515 504 

4 444 440 4 515 511 

5 574 549 5 624 596 

6 574 563 6 624 612 

7 757 719 7 757 728 

8 806 768 8 785 748 

9 806 771 9 785 761 

10 808 787 10 834 808 

11 808 797 11 834 813 

12 1100 1042 12 1115 1055 

13 1100 1067 13 1115 1084 

14 1176 1121 14 1179 1147 

15 1176 1153 15 1287 1209 

(b) 
Number of 

defects 
0 6 

Mode 

Number 

1 335 319 

2 335 326 

3 570 557 

4 570 565 

5 664 632 

6 664 647 

7 750 705 

8 762 728 

9 762 736 

10 858 823 

11 858 838 

12 1132 1061 

13 1132 1093 

14 1158 1114 

15 1260 1188 
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Figure 4.16: Mode shapes of a bridge armchair (10,10) with three double vacancy defects and three Stone-Wales defects. 
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The results of the modal analysis of defective SWNTs are similar to pristine SWNTs 

regarding boundary conditions. Applying bridge boundary conditions to defective 

SWNTs will also increase their natural frequency compared to cantilever boundary 

condition. And the reason behind that is the nature of the bridge boundary condition, 

which is the constraint movement compared to the cantilever boundary condition. 

Nevertheless, unlike the cantilever boundary condition, when any form of defection 

is introduced to the structure of the SWNT under the bridge boundary condition, its 

natural frequency gets affected, indicating that SWNTs under this boundary 

condition are more susceptible to change compared to the cantilever. Moreover, 

vacancy defects have more effect on the natural frequency of the SWNT compared 

to Stone-Wales defects. Single vacancy and Stone-Wales defects can decrease the 

natural frequency of the SWNT by up to 4%. In comparison, the increase in the 

number of double vacancy defects can reduce the natural frequency of the SWNT by 

up to 10%, which shows that the natural frequency of the SWNT can get quite 

affected if the number of defects increases during the synthesis process. 

Unlike the cantilever boundary condition, in the bridge boundary condition, all three 

different configurations of SWNT get affected by these types of defects introduced 

to the structure. The first two natural frequencies of different chirality of SWNTs 

decrease up to approximately 6%. Other natural frequencies for different modes and 

chirality also decrease up to about 7%, showing the effect of defects on the structure 

of SWNT when its movement is constrained due to the bridge boundary condition. 
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CHAPTER 5 

 

5. CONCLUSION AND FUTURE WORK 

5.1 Conclusions 

The exceptional mechanical properties of carbon nanotubes, since their discovery, 

have been the point of attention for the field of materials science. Nevertheless, due 

to the difficulty of synthesizing CNTs and problems associated with the mass 

production of these materials, it has not been implemented in various sectors yet. 

Still, research indicates that the significant potential of CNTs could lead to an 

additional improvement in the world of materials. The purpose of this study is to 

conduct modal analysis of SWNTs. This analysis provides us with valuable insights 

into the vibrational behavior of SWNTs. Moreover, it provides us with the natural 

frequencies and mode shapes of SWNTs, which are crucial for designing devices and 

structures using SWNTs. Additionally, a comprehensive understanding of the 

dynamic characteristics of the SWNTs leads to the development of novel nanoscale 

technologies. 

A thorough computational analysis was conducted on SWNTs. This computational 

analysis was done by utilizing finite element modeling. In this analysis, the 

fundamental frequencies of pristine and defective SWNTs with several lengths and 

diameters have been determined. For pristine SWNTs, four different nanotubes with 

different diameters for each armchair, zigzag, and chiral SWNTs are chosen, and 

their natural frequency is obtained in various lengths with cantilever and bridge 

boundary conditions. The results indicated that the natural frequencies of the SWNTs 

are consistently decreasing with the increase in the length of the nanotube for both 

boundary conditions. And it also shows that since the natural frequency of the short 

nanotubes is exceptionally high, they are likely to be unrealistic samples and most 
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likely cannot be synthesized. Meanwhile, the impact of diameter of the nanotube can 

be neglected by the length when it comes to the natural frequency of the SWNT. 

In the other part of the analysis, the defective SWNTs are studied. In this part of the 

analysis, the effect of vacancy defects and Stone-Wales defects on the natural 

frequencies of two SWNTs with different diameters for each armchair, zigzag, and 

chiral SWNTs for cantilever and bridge boundary conditions is investigated. By 

applying different numbers of vacancy defects and Stone-Wales defects (1, 2, 4, 6) 

on these SWNTs, their fundamental frequencies are compared with their pristine 

model. The analysis indicates that for all types of SWNTs, the double vacancy defect 

has the most degradation effect on the natural frequency of the SWNT. This is 

because as the number of double vacancy defects increases, the covalent bonds that 

connect the two carbon atoms decrease, which can significantly affect the properties 

of the SWNTs.  Also, for the single vacancy defects, since it is the simplest form of 

defect, it does not affect the SWNTs under cantilever boundary conditions by a high 

margin. It is also observed that Stone-Wales defects can have the same impact on the 

SWNTs when they are in the cantilever boundary condition, but this type of defect 

is not as impactful when it comes to the bridge boundary condition, and it does not 

impact the natural frequency as much as both single and double vacancy.  

5.2 Recommendations for Future Work 

Although this study is an extensive analysis of SWNTs under vibrational load, there 

is still much to be done regarding the CNTs in this context. Firstly, modal analysis 

can be conducted for different boundary conditions on pristine and defective 

MWNTs. Secondly, due to the remarkable properties of SWNTs, they have been 

considered one of the essential materials in the world of composites. Therefore, 

modal analysis can be done on nanomaterials or polymers which are reinforced by 

SWNT or MWNT.  

Moreover, the majority of research papers done on the vibrational properties of 

single-walled carbon nanotubes (SWNTs) have focused on cantilever and bridge 
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boundary conditions. Given that modal analysis is applicable to free-free boundary 

conditions, it can be an interesting topic to investigate for future studies. 
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